• Laser & Optoelectronics Progress
  • Vol. 57, Issue 14, 141006 (2020)
Wei Yu1, Jingjing Xu2, Yuying Liu2、*, Junsheng Zhang2, and Tengteng Li2
Author Affiliations
  • 1Engineering & Technical College of Chengdu University of Technology, Leshan, Sichuan 614000, China;
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less
    DOI: 10.3788/LOP57.141006 Cite this Article Set citation alerts
    Wei Yu, Jingjing Xu, Yuying Liu, Junsheng Zhang, Tengteng Li. No-Reference Quality Evaluation for Gamut Mapping Images Based on Natural Scene Statistics[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141006 Copy Citation Text show less
    References

    [1] Dugay F, Farup I, Hardeberg J Y. Perceptual evaluation of color gamut mapping algorithms[J]. Color Research and Application, 33, 470-476(2008).

    [2] Kolas O, Farup I. Efficient hue-preserving and edge-preserving spatial color gamut mapping. [C]// 15th Color Imaging Conference, November, 5-9, 2007, Albuquerque, NM, USA. New York: IEEE, 978, 207-212(2007).

    [3] Farup I, Gatta C, Rizzi A. A multiscale framework for spatial gamut mapping[J]. IEEE Transactions on Image Processing, 16, 2423-2435(2007).

    [4] Zhou Y, Li L D, Wu J J et al. Blind quality index for multiply distorted images using biorder structure degradation and nonlocal statistics[J]. IEEE Transactions on Multimedia, 20, 3019-3032(2018).

    [5] Zhou Y, Li L D, Wang S Q et al. No-reference quality assessment for view synthesis using DoG-based edge statistics and texture naturalness[J]. IEEE Transactions on Image Processing, 28, 4566-4579(2019).

    [6] Chandler D M. Seven challenges in image quality assessment: past, present, and future research[J]. ISRN Signal Processing, 2013, 1-53(2013).

    [7] Xue X B, Yu M, He M L. Stereoscopic image-quality-assessment method based on visual cell model[J]. Laser & Optoelectronics Progress, 53, 041004(2016).

    [8] Zhang Y, Jin W Q. Assessment method of fusion image quality in wavelet domain structural similarity[J]. Chinese Journal of Lasers, 39, 0109007(2012).

    [9] Xiong Y M, Shao F, Meng X C. Sparse representation-based full-reference quality assessment of distorted satellite stereo images[J]. Acta Optica Sinica, 38, 1210002(2018).

    [10] Zhang L, Zhang L, Mou X Q et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 20, 2378-2386(2011).

    [11] Xue W F, Zhang L, Mou X Q et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 23, 684-695(2014).

    [12] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [13] Xue S, Zhang S Y, Liu Y F. Quality assessment of hyperspectral super-resolution images[J]. Laser & Optoelectronics Progress, 56, 041001(2019).

    [14] Huang S Y, Sang Q B. No-reference stereo image quality assessment based on image fusion[J]. Laser & Optoelectronics Progress, 56, 071004(2019).

    [15] Zhu X L, Xu M Z, Cong M. Assessment method for no-reference remote sensing image quality based on support vector machine[J]. Spacecraft Recovery & Remote Sensing, 35, 83-90(2014).

    [16] Li Y F, Li C F, Sang Q B. No-reference stereo image quality assessment of cyclopean images optimized using quaternion wavelet transform[J]. Laser & Optoelectronics Progress, 56, 181006(2019).

    [17] Li L D, Lin W S, Wang X S et al. No-reference image blur assessment based on discrete orthogonal moments[J]. IEEE Transactions on Cybernetics, 46, 39-50(2016).

    [18] Li L D, Wu D, Wu J J et al. Image sharpness assessment by sparse representation[J]. IEEE Transactions on Multimedia, 18, 1085-1097(2016).

    [19] Li L D, Zhou Y, Gu K et al. Quality assessment of DIBR-synthesized images by measuring local geometric distortions and global sharpness[J]. IEEE Transactions on Multimedia, 20, 914-926(2018).

    [20] Zhou Y, Li L D, Wang S Q et al. No-reference quality assessment of DIBR-synthesized videos by measuring temporal flickering[J]. Journal of Visual Communication and Image Representation, 55, 30-39(2018).

    [21] Zhou Y, Li L D, Zhu H C et al. No-reference quality assessment for contrast-distorted images based on multifaceted statistical representation of structure[J]. Journal of Visual Communication and Image Representation, 60, 158-169(2019).

    [22] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 21, 4695-4708(2012).

    [23] Zhang Y, Chandler D M. No-reference image quality assessment based on log-derivative statistics of natural scenes[J]. Journal of Electronic Imaging, 22, 043025(2013).

    [24] Gu K, Zhai G T, Yang X K et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 17, 50-63(2015).

    [25] Lissner I, Preiss J, Urban P et al. Image-difference prediction: from grayscale to color[J]. IEEE Transactions on Image Processing, 22, 435-446(2013).

    [26] Lee D, Plataniotis K N. Towards a full-reference quality assessment for color images using directional statistics[J]. IEEE Transactions on Image Processing, 24, 3950-3965(2015).

    [27] Lee D, Plataniotis K N. Toward a No-reference image quality assessment using statistics of perceptual color descriptors[J]. IEEE Transactions on Image Processing, 25, 3875-3889(2016).

    [28] Liu L X, Hua Y, Zhao Q J et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network[J]. Signal Processing: Image Communication, 40, 1-15(2016).

    [29] Zhang X, Wandell B A. A spatial extension of CIELAB for digital color-image reproduction[J]. Journal of the Society for Information Display, 5, 61-63(1997).

    [30] Wu J J, Lin W S, Shi G M et al. Visual orientation selectivity based structure description[J]. IEEE Transactions on Image Processing, 24, 4602-4613(2015).

    [31] Marĉelja S. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America, 70, 1297-1300(1980).

    [32] Fang Y M, Ma K D, Wang Z et al. No-reference quality assessment of contrast-distorted images based on natural scene statistics[J]. IEEE Signal Processing Letters, 22, 838-842(2015).

    [33] Jupp P E, Batschelet E. Circular statistics in biology[J]. Biometrics, 38, 870(1982).

    [34] Bara czuk Z, Zolliker P, Giesen J. Image-individualized gamut mapping algorithms[J]. Journal of Imaging Science and Technology, 54, 030201(2010).

    [35] Thurstone L L. A law of comparative judgment[J]. Psychological Review, 34, 273-286(1927).

    [36] Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 17, 513-516(2010).

    [37] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 20, 3350-3364(2011).

    [38] Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 21, 3339-3352(2012).

    [39] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).

    [40] Zhang L, Zhang L, Bovik A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Transactions on Image Processing, 24, 2579-2591(2015).

    Wei Yu, Jingjing Xu, Yuying Liu, Junsheng Zhang, Tengteng Li. No-Reference Quality Evaluation for Gamut Mapping Images Based on Natural Scene Statistics[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141006
    Download Citation