• Acta Optica Sinica
  • Vol. 37, Issue 6, 617001 (2017)
Zhang Haibo*, Geng Guohua, Zhao Yingcheng, Sun Yi, Yi Huangjian, Hou Yuqing, and He Xiaowei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0617001 Cite this Article Set citation alerts
    Zhang Haibo, Geng Guohua, Zhao Yingcheng, Sun Yi, Yi Huangjian, Hou Yuqing, He Xiaowei. Nonconvex L1-2 Regularization for Fast Cone-Beam X-Ray Luminescence Computed Tomography[J]. Acta Optica Sinica, 2017, 37(6): 617001 Copy Citation Text show less
    References

    [1] Ahmad M, Pratx G, Bazalova M, et al. X-ray luminescence and X-ray fluorescence computed tomography: new molecular imaging modalities[J]. IEEE Access, 2014, 2(2): 1051-1061.

    [2] Pratx G, Carpenter C M, Sun C, et al. X-ray luminescence computed tomography via selective excitation: a feasibility study[J]. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992-1999.

    [3] He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

    [4] Liu Hejuan, Hou Yuqing, He Xiaowei, et al. A comparative study and evaluation on several typical iterative methods for bioluminescence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081704.

    [5] Dong Fang, Hou Yuqing, Yu Jingjing, et al. Fluorescencemolecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011701.

    [6] Yu J J, Cheng J X, Hou Y Q, et al. Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450008.

    [7] Li C Q, Martínezdávalos A, Cherry S R. Numerical simulation of X-ray luminescence optical tomography for small-animal imaging[J]. Journal of Biomedical Optics, 2014, 19(4): 046002.

    [8] Zhang Haibo, Geng Guohua, Yi Huangjian, et al. Comparison between pencil-beam and cone-beam in XLCT system[J]. Optics and Precision Engineering, 2016, 24(5): 986-992.

    [9] Liu X, Liao Q M, Wang H K. Fast X-ray luminescence computed tomography imaging[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(6): 1621-1627.

    [10] Chen D M, Zhu S P, Yi H J, et al. Cone beam X-ray luminescence computed tomography: a feasibility study[J]. Medical Physics, 2013, 40(3): 031111.

    [11] Chen D M, Zhu S P, Chen X L, et al. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging[J]. Applied Physics Letters, 2014, 105(19): 191104.

    [12] Liu X, Liao Q M, Wang H K, et al. Excitation-resolved cone-beam X-ray luminescence tomography[J]. Journal of Biomedical Optics, 2015, 20(7): 070501.

    [13] Natarajan B K. Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing, 1995, 24(2): 227-234.

    [14] Yi H J, Chen D F, Li W, et al. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study[J]. Journal of Biomedical Optics, 2013, 18(5): 056013.

    [15] He Xiaowei, Jin Chen, Yi Huangjian, et al. X-ray luminescence computed tomography based on split augmented Lagrangian shrinkage algorithm[J]. Acta Optica Sinica, 2016, 36(3): 0317001.

    [16] Wang D F, He J, Qiao H T, et al. High-performance fluorescence molecular tomography through shape-based reconstruction using spherical harmonics parameterization[J]. PLOS ONE, 2014, 9(4): e94317.

    [17] Zhao L L, Yang H, Cong W X, et al. Lp regularization for early gate fluorescence molecular tomography[J]. Optics Letters, 2014, 39(14): 4156-4159.

    [18] Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement[J]. Physics in Medicine & Biology, 2014, 59(12): 2901-2912.

    [19] Yin P H, Lou Y F, He Q, et al. Minimization of L1-2 for compressed sensing[J]. SIAM Journal on Scientific Computing, 2015, 37(1): A536-A563.

    [20] Lou Y F, Yin P H, He Q, et al. Computing sparse representation in a highly coherent dictionary based on difference of L1, and L2[J]. Journal of Scientific Computing, 2015, 64(1): 178-196.

    [21] Liu X, WangH K, Xu M T, et al. A wavelet-based single-view reconstruction approach for cone beam X-ray luminescence tomography imaging[J]. Biomedical Optics Express, 2014, 5(11): 3848-3858.

    [22] Jin A, Yazici B, Ale A, et al. Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing[J]. Optics Letters, 2012, 37(20): 4326-4328.

    [23] Jin Chen, Guo Hongbo, Hou Yuqing, et al. Biolunminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 2014, 34(6): 0617001.

    [24] Ghadimi E, Teixeira A, Shames I, et al. Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems[J]. IEEE Transactions on Automatic Control, 2014, 60(3): 644-658.

    [25] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862.

    [26] Tao P D, An L T H. Convex analysis approach to DC programming: theory, algorithms and applications[J]. Acta Mathematica Vietnamica, 1997, 22(1): 289-355.

    [27] Lin Z C, Liu R S, Su Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]. Advances in Neural Information Processing Systems, 2011: 612-620.

    [28] Lai M J, Xu Y Y, Yin W T. Improved iteratively reweighted least squares for unconstrained smoothed q minimization[J]. SIAM Journal on Numerical Analysis, 2013, 51(2): 927-957.

    [29] Zacharopoulos A D, Svenmarker P, Axelsson J, et al. A matrix-free algorithm for multiple wavelength fluorescence tomography[J]. Optics Express, 2009, 17(5): 3025-3035.

    [30] Li C B. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D]. Houston: Rice University, 2010.

    [31] Shi J W, Cao X, Liu F, et al. Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion[J]. Journal of the Optical Society of America A, 2013, 30(3): 437-447.

    [32] Dogdas B, Stout D, Chatziioannou A F, et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine & Biology, 2007, 52(3): 577-587.

    [33] Alexandrakis G, Rannou F R, Chatziioannou A F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study[J]. Physics in Medicine & Biology, 2011, 50(17): 4225-4241.

    [34] Yan G R, Tian J, Zhu S P, et al. Fast cone-beam CT image reconstruction using GPU hardware[J]. Journal of X-Ray Science and Technology, 2008, 16(4): 225-234.

    [35] Chen X L, Gao X B, Chen D F, et al. 3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images[J]. Optics Express, 2010, 18(19): 19876-19893.

    CLP Journals

    [1] Wang Xiaodong, Geng Guohua, Yi Huangjian, He Xuelei, He Xiaowei. Location Method of Excitation Planes Based on Gaussian Mixture Distribution[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101701

    Zhang Haibo, Geng Guohua, Zhao Yingcheng, Sun Yi, Yi Huangjian, Hou Yuqing, He Xiaowei. Nonconvex L1-2 Regularization for Fast Cone-Beam X-Ray Luminescence Computed Tomography[J]. Acta Optica Sinica, 2017, 37(6): 617001
    Download Citation