• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0314004 (2022)
Rusong Li1、2 and Huanyu Lu1、*
Author Affiliations
  • 1State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun , Jilin 130033, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202259.0314004 Cite this Article Set citation alerts
    Rusong Li, Huanyu Lu. Research on Threshold Gain and Output Optical Power of Photonic Crystal Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314004 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[M]. Burstein E, Weisbuch C. Confined electrons and photons, 340, 841-844(1995).

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [3] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).

    [4] Song B S, Noda S, Asano T et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature Materials, 4, 207-210(2005).

    [5] Asano T, Song B S, Akahane Y et al. Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1123-1134(2006).

    [6] Imada M, Noda S, Chutinan A et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure[J]. Applied Physics Letters, 75, 316-318(1999).

    [7] Matsubara H, Yoshimoto S, Saito H et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[J]. Science, 319, 445-447(2008).

    [8] Ohnishi D, Okano T, Imada M et al. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J]. Optics Express, 12, 1562-1568(2004).

    [9] Guo X J, Wang Y F, Qi A Y et al. Lateral cavity photonic crystal surface emitting laser with narrow divergence angle[J]. IEEE Photonics Technology Letters, 28, 1976-1979(2016).

    [10] Noda S, Yokoyama M, Imada M et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 293, 1123-1125(2001).

    [11] Miyai E, Sakai K, Okano T et al. Lasers producing tailored beams[J]. Nature, 441, 946(2006).

    [12] Kurosaka Y, Iwahashi S, Liang Y et al. On-chip beam-steering photonic-crystal lasers[J]. Nature Photonics, 4, 447-450(2010).

    [13] Noda S, Kitamura K, Okino T et al. Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-7(2017).

    [14] Sakata R, Ishizaki K, de Zoysa M et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers[J]. Nature Communications, 11, 3487(2020).

    [15] Iwahashi S, Sakai K, Kurosaka Y et al. Air-hole design in a vertical direction for high-power two-dimensional photonic-crystal surface-emitting lasers[J]. Journal of the Optical Society of America B, 27, 1204(2010).

    [16] Hirose K, Liang Y, Kurosaka Y et al. Watt-class high-power, high-beam-quality photonic-crystal lasers[J]. Nature Photonics, 8, 406-411(2014).

    [17] Yoshida M, de Zoysa M, Ishizaki K et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 18, 121-128(2019).

    [18] Hsu M Y, Lin G, Pan C H. Electrically injected 13-μm quantum-dot photonic-crystal surface-emitting lasers[J]. Optics Express, 25, 32697(2017).

    [19] Lu H Y, Tian S C, Tong C Z et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band[J]. Light: Science & Applications, 8, 108(2019).

    [20] Song A Y, Kalapala A R K, Zhou W D et al. First-principles simulation of photonic-crystal surface-emitting lasers using rigorous coupled wave analysis[J]. Applied Physics Letters, 113, 041106(2018).

    [21] Imada M, Chutinan A, Noda S et al. Multidirectionally distributed feedback photonic crystal lasers[J]. Physical Review B, 65, 195306(2002).

    [22] Zhou W J, Chen W, Liu A J et al. The impact of imperfect symmetry on band edge modes of a two-dimensional photonic crystal with square lattice[J]. Journal of Optics A: Pure and Applied Optics, 10, 095203(2008).

    [23] Chuang S L[M]. Physics of photonics devices(2009).

    [24] Cartledge J C, Srinivasan R C. Extraction of DFB laser rate equation parameters for system simulation purposes[J]. Journal of Lightwave Technology, 15, 852-860(1997).

    [25] Fatadin I, Ives D, Wicks M. Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers[J]. IEEE Journal of Quantum Electronics, 42, 934-941(2006).

    [26] Mao Q P, Xie K, Hu L et al. Light trapping at Dirac point in 2D triangular Archimedean-like lattice photonic crystal[J]. Applied Optics, 55, B139-B143(2016).

    [27] Lu H Y, Tong C Z, Wang Z Y et al. Research advancement on band-edge mode photonic crystal surface-emitting semiconductor laser[J]. Chinese Journal of Lasers, 47, 0701014(2020).

    Rusong Li, Huanyu Lu. Research on Threshold Gain and Output Optical Power of Photonic Crystal Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314004
    Download Citation