• Photonics Research
  • Vol. 9, Issue 11, 2222 (2021)
Xiaobao Zhang1、2, Guoping Lin1、*, Tang Sun1, Qinghai Song1, Guangzong Xiao2、3, and Hui Luo2
Author Affiliations
  • 1Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3e-mail: xiaoguangzong@nudt.edu.cn
  • show less
    DOI: 10.1364/PRJ.435837 Cite this Article Set citation alerts
    Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo. Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon[J]. Photonics Research, 2021, 9(11): 2222 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [3] J. Li, H. Lee, T. Chen, K. J. Vahala. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 109, 233901(2012).

    [4] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [5] L. Ge, L. Feng, H. G. Schwefel. Optical microcavities: new understandings and developments. Photon. Res., 5, OM1-OM3(2017).

    [6] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [7] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2008).

    [8] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [9] Q.-F. Yang, B. Shen, H. Wang, M. Tran Anh, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, K. Vahala. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965-968(2019).

    [10] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, S. A. Diddams. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [11] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, M. T. Hummon. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [12] M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. Grudinin, G. Vasisht, E. Martin, M. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. Papp, S. Diddams, C. Beichman, K. Vahala. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

    [13] E. Obrzud, M. Rainer, A. Harutyunyan, M. Anderson, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. Kippenberg, T. Herr. A microphotonic astrocomb. Nat. Photonics, 13, 31-35(2019).

    [14] J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. Kippenberg, C. Koos. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).

    [15] A. Fülöp, M. Mazur, A. Lorences-Riesgo, P.-H. Wang, Y. Xuan, D. Leaird, M. Qi, P. Andrekson, A. Weiner, V. Torres-Company. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [16] D. Spencer, T. Drake, T. Briles, J. Stone, L. Sinclair, C. Fredrick, Q. Li, D. Westly, B. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. Pfeiffer, T. Kippenberg, S. Papp. An integrated-photonics optical-frequency synthesizer. Nature, 557, 81-85(2018).

    [17] S.-W. Huang, J. Yang, M. Yu, B. McGuyer, D.-L. Kwong, T. Zelevinsky, C. Wong. A broadband chip-scale optical frequency synthesizer at 2.7×10−6 relative uncertainty. Sci. Adv., 2, e1501489(2016).

    [18] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [19] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, T. J. Kippenberg. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [20] J. Wang, Z. Lu, W. Weiqiang, F. Zhang, J. Chen, Y. Wang, J. Zheng, S. Chu, W. Zhao, B. Little, X. Qu, W. Zhang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).

    [21] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Gallo, X. Fu, A. Lukashchuk, A. Raja, J. Liu, D. Wright, A. Sebastian, T. Kippenberg, W. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [22] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. Nguyen, S. Chu, B. Little, D. Hicks, R. Morandotti, A. Mitchell, D. Moss. 11 tops photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [23] J. Wang, Y. Guo, H. Liu, L. C. Kimerling, J. Michel, A. M. Agarwal, G. Li, L. Zhang. Robust cavity soliton formation with hybrid dispersion. Photon. Res., 6, 647-651(2018).

    [24] H. Weng, J. Liu, A. A. Afridi, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, J. F. Donegan, W. Guo. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res., 9, 1351-1357(2021).

    [25] J. Gu, J. Liu, Z. Bai, H. Wang, X. Cheng, G. Li, M. Zhang, X. Li, Q. Shi, M. Xiao, X. Jiang. Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip. Photon. Res., 9, 722-725(2021).

    [26] X. Zhang, H. Luo, W. Xiong, X. Chen, X. Han, G. Xiao, H. Feng. Numerical investigation of turnkey soliton generation in an organically coated microresonator. Phys. Rev. A, 103, 023515(2021).

    [27] X. Wang, P. Xie, W. Wang, Y. Wang, Z. Lu, L. Wang, S. T. Chu, B. E. Little, W. Zhao, W. Zhang. Program-controlled single soliton microcomb source. Photon. Res., 9, 66-72(2021).

    [28] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, L. Maleki. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

    [29] X. Xue, M. Qi, A. M. Weiner. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 5, 244-262(2016).

    [30] G. Lin, Y. K. Chembo. Phase-locking transition in Raman combs generated with whispering gallery mode resonators. Opt. Lett., 41, 3718-3721(2016).

    [31] G. Lin, S. Diallo, J. M. Dudley, Y. K. Chembo. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators. Opt. Express, 24, 14880-14894(2016).

    [32] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. Vahala, J. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [33] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).

    [34] Q.-F. Yang, X. Yi, K. Y. Yang, K. Vahala. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators. Optica, 3, 1132-1135(2016).

    [35] X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, K. Vahala. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2016).

    [36] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [37] M. Kues, C. Reimer, P. Roztocki, L. Romero Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. Chu, B. Little, D. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [38] J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, T. J. Kippenberg. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express, 20, 27661-27669(2012).

    [39] W. C. Jiang, J. Zhang, N. G. Usechak, Q. Lin. Dispersion engineering of high-Q silicon microresonators via thermal oxidation. Appl. Phys. Lett., 105, 031112(2014).

    [40] A. Eshaghian, D. Timucin, K. Thyagarajan, T. Wunderer, N. Johnson, D. Schwartz. Advanced dispersion engineering of a III-nitride micro-resonator for a blue frequency comb. Opt. Express, 28, 30542-30554(2020).

    [41] Y. Okawachi, K. Saha, J. Levy, Y. Wen, M. Lipson, A. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [42] S. Kim, K. Han, C. Wang, J. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. Leaird, A. Weiner, M. Qi. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun., 8, 372(2017).

    [43] K. Y. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Y. Oh, S. Diddams, S. Papp, K. Vahala. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316-320(2016).

    [44] I. Grudinin, N. Yu. Dispersion engineering of crystalline resonators via microstructuring. Optica, 2, 221-224(2015).

    [45] S. Fujii, Y. Hayama, K. Imamura, H. Kumazaki, Y. Kakinuma, T. Tanabe. All-precision-machining fabrication of ultrahigh-Q crystalline optical microresonators. Optica, 7, 694-701(2020).

    [46] S. Fujii, T. Tanabe. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 9, 1087-1104(2020).

    [47] P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, T. Kippenberg. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photonics, 3, 529-533(2009).

    [48] M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, R. Lalezari. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express, 13, 882-888(2005).

    [49] S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, T. Tanabe. Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators. Opt. Lett., 44, 3146-3149(2019).

    [50] G. Lin, J. Fürst, D. V. Strekalov, I. S. Grudinin, N. Yu. High-Q UV whispering gallery mode resonators made of angle-cut BBO crystals. Opt. Express, 20, 21372-21378(2012).

    [51] J. Li, H. Lee, K. Y. Yang, K. Vahala. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express, 20, 26337-26344(2012).

    [52] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [53] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    [54] H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, C. Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [55] T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, T. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2012).

    [56] L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, L. Yang. Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Appl. Phys. Lett., 93, 201102(2008).

    [57] M. J. Weber. Handbook of Optical Materials(2003).

    [58] G. Lin, Y. Chembo. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23, 1594-1604(2015).

    [59] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [60] A. Kordts, M. H. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion sin microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [61] I. S. Grudinin, V. Huet, N. Yu, A. B. Matsko, M. L. Gorodetsky, L. Maleki. High-contrast Kerr frequency combs. Optica, 4, 434-437(2017).

    CLP Journals

    [1] Shuai Wan, Rui Niu, Jin-Lan Peng, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs[J]. Chinese Optics Letters, 2022, 20(3): 032201

    [2] Guoping Lin, Tang Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators[J]. Photonics Research, 2022, 10(3): 731

    Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo. Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon[J]. Photonics Research, 2021, 9(11): 2222
    Download Citation