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Dispersion engineering and measurement are significant for nonlinear photonic applications using whispering
gallery mode microresonators. Specifically, the Kerr microresonator frequency comb as an important example has
attracted a great amount of interest in research fields due to the potential capability of full integration on a chip. A
simple and cost-efficient way for dispersion measurements is thereby in high demand for designing such a micro-
comb device. Here, we report a dispersion measurement approach using a fiber ring etalon reference. The free
spectral range of the etalon is first measured through sideband modulation, and the dispersion of the etalon is
inferred by binary function fitting during the dispersion measurement. This method is demonstrated on two
MgF2 disk resonators. Experimental results show good agreement with numerical simulations using the finite
element method. Dispersion engineering on such resonators is also numerically investigated. © 2021 Chinese

Laser Press

https://doi.org/10.1364/PRJ.435837

1. INTRODUCTION

Optical microresonators with small mode volumes and ultra-
high quality (Q) factors can significantly decrease the threshold
power of parametric oscillations, which makes them an ideal
platform for optical frequency comb generation [1–6]. Since
Kerr frequency combs were demonstrated in a silica toroidal
cavity in 2007 [7], they have been utilized in applications such
as spectroscopy [8,9], optical atomic clocks [10,11], astronomi-
cal calibration [12,13], coherent communications [14,15], low-
noise frequency synthesis [16,17], laser ranging [18–20], and
photonic convolutional processing [21,22]. Dispersion as one
of key parameters of Kerr microcombs, usually referred to as the
group velocity dispersion (GVD) of cavity modes, is preferred
to be in the anomalous regime [2,23–27]. Although Kerr fre-
quency combs can be obtained in the normal dispersion regime
under some special conditions [28–33], the spectral width is
typically limited. Moreover, the dispersive wave caused by
the optical analog of Cherenkov radiation may occur when
a Kerr soliton comb extends into a region where second order
dispersion changes sign [34]. These waves play an important
role in spectral control and can provide quiet states of soliton
comb operation [35]. In addition, the dispersion of microreso-
nators has a large influence on quantum optics, which needs
high coherences [36,37].

The dispersion of microresonators is mainly determined by
two parts: material and geometric dispersion. Therefore,
dispersion engineering is realized by controlling these two parts.
Extensive works have been contributed in this field. For in-
stance, HfO2-coated Si3N4, oxidized Si resonators, and hybrid
waveguides of AlGaN and AlN have been studied to apply
multiple host materials for material dispersion engineering
[38–40]. Geometry dispersion can be realized through chang-
ing the dimension of the waveguide cross section such as
rectangular waveguides with different widths and heights, con-
centric structures of Si3N4, wedge and double-wedge shapes of
SiO2, and microstructured boundaries of crystalline disk reso-
nators [41–45]. Hence, microresonator dispersion measure-
ment is highly demanded in this field.

There have been several methods for the measurement of
the microresonator dispersion [46]. One of the common ways
is frequency-comb-based spectroscopy [47–49]. In this way, the
frequency-comb laser intervenes with the scanning continuous-
wave laser, which is injected in the microresonator. Then the
beat signals of the two lasers are like a ruler and provide
information of the scanning laser frequency. Another method
is sideband spectroscopy based on electro-optic modulation
[43,50,51]. Usually, an electro-optic phase modulator is uti-
lized to generate sidebands of the scanning laser. The frequency
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difference between the sidebands and pump is equivalent to the
modulation frequency generated by a radio-frequency (RF)
source. Therefore, the laser frequency is linked with the known
RF signals, and dispersion can be obtained. Although these two
methods can provide high-precision dispersion measurements,
the requirement of a commercial frequency comb laser or a tun-
able microwave source that can reach about one free spectral
range (FSR) of the microresonator is usually difficult to meet
for regular laboratory conditions. Thereby, other methods have
been developed. For instance, a price-friendly fiber Mach–
Zehnder interferometer (MZI) can be applied in dispersion
measurement [52–54]. However, it usually needs to be cali-
brated by the two methods mentioned before, as it is difficult
to get its FSR and dispersion from MZI fringes [46].

In this paper, we introduce a dispersion measurement
method based on a fiber ring cavity that is cheap and easy
to access. The FSR of the fiber cavity can be easily designed
to be few tens of MHz. Moreover, unlike MZI, its FSR can
be directly calibrated with a regular in-laboratory function gen-
erator without the presence of microresonators. Assisted by
binary function fitting of the measurement data, the dispersion
of the fiber cavity is assessed. Finally, the data can be used to
derive the dispersion profile of the whispering gallery mode
(WGM) family. The method is demonstrated on two MgF2
resonators with different cross sections. Experimental results
meet our simulations obtained using the finite element method
(FEM). Numerical investigation of dispersion engineering in
such resonators is also carried out.

2. THEORY AND METHODS

The resonance frequency intervals between adjacent longi-
tudinal modes should be the same in an ideal optical resonator
without dispersion. Hence, the relative positions of the reso-
nance frequencies can be used to characterize resonator
dispersion. Generally, the resonance frequencies ωμ of a mode
family can be expressed in a form of Taylor expansion
[26,52,55]:

ωμ � ω0 � D1μ�
1

2
D2μ

2 �
X

j>2

1

j!
Djμ

j

� ω0 � D1μ� Dint, (1)

where μ is the relative mode number, and μ � 0 corresponds to
the central mode, which is around 1550 nm. D1, D2 character-
ize the equidistant resonator FSR and second order dispersion,
respectively. Dint is the sum of the nonlinear terms, which rep-
resents the influence of dispersion, and ω0 is the resonance fre-
quency of the central mode. In most cases, only second order
dispersion is considered as D1 ≫ D2 ≫ Dj �j > 2�.

The schematic of this dispersion measurement method is
shown in Fig. 1(a). In the experiment, an external cavity diode
laser (ECDL) with a linewidth of 10 kHz is used as the light
source, and the transmission spectra of the two cavities are re-
corded at the same time with a four-channel oscilloscope. The
fiber ring etalon is prepared using a 2 × 2 90∶10 fiber coupler
with two ports connecting (10% output port connected with
another input port) through a single mode fiber. The FSR of
the etalon thereby is determined by the fiber loop length. For

clarity, a fiber polarizer is added to ensure single polarized mode
operation within one FSR when scanning the laser as shown in
Fig. 1(b). Also, the resonance frequency of resonators is affected
by temperature. The thermo-optical coefficient of silica is about
1.19 × 10−5 K−1, which means the resonance frequency drift
caused by temperature changing is about 2 MHz/mK at
1550 nm [56]. This thermal frequency drift reduces the accu-
racy of measurement, and sometimes the relative frequency
shift between the fiber cavity resonance and MgF2 microreso-
nator resonance can exceed 160 MHz/min. Considering that
the maximum value of Dint we measured in the experiment
is about dozens of MHz, this temperature drift cannot be
ignored. Thus, a silicone rubber heater is utilized to keep
the temperature of the fiber cavity stable through propor-
tional-integral-derivative (PID) control. The thermo-optical
coefficient ofMgF2 is more than an order of magnitude smaller
than that of silica [57]. Hence, it is found that even if the tem-
perature control is applied only on the fiber cavity, the relative
frequency shift can be already smaller than 5 MHz/min.

As the transmission spectra of the fiber cavity and the MgF2
microresonator are obtained simultaneously, every resonance fre-
quency of the microresonator can be expressed in the form of the
corresponding resonance frequency of the fiber cavity. However,
the resonance frequency of the fiber cavity usually is not coinci-
dent with that of the microresonator. Here a rational parameter
μF is defined as the corresponding mode number of microreso-
nator mode μ, and its absolute value is equal to the number (n) of
complete periods of fiber cavity FSR plus the residual non-inte-
ger periodic number (tμ∕T μ) between mode μ and the central
mode of the fiber cavity [see Fig. 1(e)]. Hence, the resonance
frequency of mode μ can be expressed in a form of μF :

ωμ � ω0F � D1FμF � DintF ≈ ω0F � D1FμF � 1

2
D2Fμ

2
F ,

(2)

where ω0F , D1F , D2F , DintF represent the central mode reso-
nance frequency, equidistant FSR, second order dispersion,
and total dispersion of the fiber cavity, respectively.
Equation (2) appears similar to Eq. (1); however, it should be
noted that μ is an integer, and μF is a rational number corre-
sponding to μ in a form of fiber cavity mode periods. Then
the frequency difference between mode μ and the central mode
can be expressed as

Δωμ� ωμ −ω0 ≈D1μ�
1

2
D2μ

2� D1FμF �
1

2
D2Fμ

2
F �Δω0,

(3)
where Δω0 is defined as the frequency difference between ω0

and ω0F . Figure 1(e) shows how Eq. (3) is acquired and the def-
inition of the parameters as an example of μ � −1. Hence, the
dispersion influence Dint appears as

Dint ≈
1

2
D2μ

2 � D1FμF − D1μ�
1

2
D2Fμ

2
F � Δω0: (4)

Particularly, a parameterD 0
int that includes dispersion of the fiber

cavity is defined as

D 0
int � Dint − DintF ≈ D1FμF − D1μ� Δω0: (5)

From Eq. (5), it is found that D 0
int is a binary function of μ and

μF , and the fitting is based on this formula. The measurement
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process can be divided into three steps. First, FSR of the fiber
cavity at 1550 nm is measured by the electro-optic sideband
method. Specifically, as shown in Fig. 1(c), two sidebands
generated by a phase modulator can also resonate with the fiber
cavity, and this induces two more resonance dips on the trans-
mission spectrum. As part of the pump power is used to generate
sidebands, the transmission of pump resonance increases. When
the modulation frequency (f m) nearly matches the fiber cavity
FSR, the three dips can overlap each other and become one res-
onance dip [46]. Then f m is finely tuned to make
the dip deepest, and now the modulation frequency is equal
to the cavity FSR, namely, D1F∕2π � f m. As the FSR of the
fiber cavity is about dozens of MHz, which is much smaller
than that of WGM resonators (WGMRs) (at least dozens of

GHz), a general function generator can be used as the RF source,
and the cost reduces significantly compared to previous sideband
spectrum methods. Second, the measurement data are processed
according to Eq. (5), and the binary function fitting is conducted
on the processed data. In this step, μ, μF , and Δω0 can be
directly obtained from measurement. Also, D1 is estimated as
D1 ≈ �jΔω1j � jΔω−1j�∕2 without consideration of fiber cavity
dispersion, and the estimatedD1 can be finely adjusted to ensure
that the scatter diagram ofD 0

int and μ is symmetric about μ � 0.
The detailed fitting process will be demonstrated in Section 4.
Finally, after acquiring D2F , the measurement data are
reprocessed based on Eq. (4), and a quadratic fitting is utilized
to get D2, which characterizes the dispersion of the
WGM.
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Fig. 1. (a) Schematic of the experiment setup. Orange lines denote optical paths, and blue lines represent electric cables. A tapered fiber is
employed to couple the laser in and out of the microresonator. The fiber cavity is put on a silicone rubber heater, and both of them are kept
in a thermal insulation box. Temperature is set as 50°C in the experiment. FPC, fiber polarization controller; FG, function generator; PM, phase
modulator; TC, temperature controller; FC, fiber cavity; PD, photodiode. (b) Transmission spectrum of the fiber cavity without phase modulation.
The red dashed line is Lorentz fitting for the resonance, and the fitting shows that the loaded Q of this fiber cavity mode is about 97 million.
(c) Transmission spectrum of the fiber cavity when modulation frequency is 10 MHz. Two small dips in one FSR are caused by the resonance
between sidebands and fiber cavity. (d) Transmission spectrum of the fiber cavity when modulation frequency is equal to one FSR of the cavity. In
this situation, the transmission spectrum is almost the same as the one without phase modulation. (e) Measured microresonator transmission
spectrum (blue) and etalon signal (red) of one microresonator FSR. The laser is scanned from short to long wavelength. Two small figures below
the larger one are enlarged views.
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3. NUMERICAL EVALUATIONS OF WGM
DISPERSION

Previous studies reveal that FEM is a reliable way to calculate
microresonator dispersion, and its results are in good agreement
with experimental ones [43,46,51]. Hence, FEM has been
widely used in microresonator dispersion engineering. The
numerical results can assist binary function fitting and provide
a good assessment of the etalon reference. It is vital to build an
effective geometrical model for FEM calculation as the material
of the resonators is determined. Although the analytical
approximation of eigenfrequencies of WGMs in toroidal disks
has been used to investigate cavity dispersion for Kerr combs
[58], FEM can provide better accuracy and flexibility. As shown
in Fig. 2(a), different from previous spheroid models of MgF2
resonators [46], the cross section of the resonator boundary is
characterized by an arc connected with two oblique lines. The
geometry of one MgF2 microresonator is described by five
parameters, namely, the major radius R, arc radius r, length
of the arc area h, and two angles between two oblique lines
and horizontal line θ1, θ2. An optical microscope is used to
measure the geometrical contours of two WGMRs, called
WGMR A and WGMR B.

Different transverse azimuthal modes of these two microre-
sonators are investigated by FEM. The mode index p represents
different orders in the azimuthal direction. Although disk res-
onators also feature different radial modes, they could show
normal dispersion, which is not preferable for comb generation.
Figures 3(a) and 3(b) give calculated field distributions of dif-
ferent azimuthal modes, and their corresponding Dint∕2π are

also shown in Figs. 3(c) and 3(d). It is obvious that higher order
azimuthal modes have larger dispersion, and Dint within a small
spectral window (1530–1570 nm) can be seen as being contrib-
uted only by second order dispersion.

The influence of geometry parameters on WGM dispersion
is also studied by FEM. Figure 4 demonstrates the calculation
results of different geometry parameter settings of various azi-
muthal modes. In each subplot, except the scanning parameter,
the other parameters remain unchanged in the calculation. The
general settings are r � 100 μm, h � 25 μm, θ1 � θ2 � 60°.
Also, as θ1 and θ2 are equivalent in geometry dispersion,
Fig. 4(d) gives the results of scanning θ, which is defined as
θ � θ1 � θ2. Namely, these two angles have the same value
and change simultaneously in this subplot.

It is obvious from Fig. 4 that dispersion values of all three
azimuthal modes have similar trend patterns with the specific

R

r h

θ1

θ2

1 mm1 mm

500 µm 500 µm20 µm 20 µm

(a)

(a)

(b) (d)

(c) (e)

WGMR  A WGMR  B

R  879 µm R  1164 µm

Fig. 2. (a) Geometric model of MgF2 microresonators. The left
panel is an enlarged view of the microresonator boundary where light
transmits. (b) Top view of WGMR A mounted on a glass plate. The
measured main radius R is about 879 μm. (c) Front view of WGMR A.
The right panel is the geometry used in FEM, which is obtained from
the left panel by zooming in. In this model, r ≈ 86 μm, h ≈ 23 μm,
θ1 ≈ 73°, θ2 ≈ 68°. (d) Top view of WGMR B mounted on a post.
The measured main radius R is about 1164 μm. (e) Front view of
WGMR B. The right panel is the geometry used in FEM, which
is obtained from the left panel by zooming in. The arc area is rotated
to make the model more coincident with the real one. In this model,
r ≈ 176 μm, h ≈ 24 μm, θ1 ≈ 60°, θ2 ≈ 63°.
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geometry parameter scanning. However, higher order azimu-
thal modes are more sensitive to geometry parameters, as they
show larger fluctuations in dispersion values. This could be ex-
plained by the fact that higher order azimuthal modes feature
larger mode areas and their mode distributions can be easily
influenced by boundary geometry changes. Moreover, com-
pared to other geometry parameters, r seems to have a smaller
influence on dispersion, and a small h may induce a negative
D2, which is not preferable for frequency comb generation.
Hence, in these parameter settings, θ1, θ2 may be more suitable
for dispersion engineering.

4. RESULTS AND DISCUSSION

In the measurement, the laser scanning speed is set as 10 nm/s,
and scanning range is 1530–1570 nm. The sampling rate of the
oscilloscope is 5 MSa/s. Since the laser scanning speed is not

constant through the whole operation, we choose to analyze the
central data. The actual number of sampling points is about 23
million per channel for one scan, which means that the
sampling precision of the laser frequency is about 200 kHz.
The measurement data of WGMR A are processed based on the
method introduced in Section 2. Figure 5(a) demonstrates the
dispersion parameter including fiber cavity dispersion D 0

int with
the relative mode number μ. The equation used for binary
function fitting differs from Eq. (5) considering some realities,
and it appears as

D 0
int �

1

2
D2μ

2 −
1

2
D2Fμ

2
F � aμ� b, (6)

where the significance of a lies in the calibration forD1, asD1 is
an estimated number. However, it should not have a calibration
for D1F, while the value of D1 is based on the value of D1F , and
a calibration for D1F will compensate for the value change of
D1. Similarly, b is introduced as a result of the measuring error
and the influence of an avoided mode crossing near the central
mode [59]. As the right half (μ > 0) of D 0

int is obviously af-
fected by avoided mode crossings (spur-like features), only
the left half is utilized for fitting. Some fitting parameters,
for example, starting points and boundaries, are set based on
the FEM results, and the fitting results are shown in Fig. 5(b).

As described in Section 2, the parameters obtained from
binary function fitting are used to reprocess the measuring data
according to Eq. (4). Then a quadratic fitting is applied in the
reprocessed data to get D2∕2π. Mode index p of the WGM is
inferred by the FEM combined with the measurement
dispersion results. The transmission of the WGM used for cal-
ibration is shown in Fig. 6(a), and Fig. 6(b) demonstrates the
dispersion measurement results after calibration. The D2∕2π
obtained from the fitted quadric curve is 10.1 kHz, which is
about 0.5 kHz larger than that from FEM results. Considering
the geometric measurement and experimental measurement
uncertainty, this difference is reasonable. Afterwards, the fiber
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cavity dispersion D2F∕2π acquired from binary function fitting
is directly used to measure WGM dispersion of WGMR B, and
the measurement results are shown in Figs. 6(d) and 6(f ) com-
pared with the FEM results.

It is clear from Fig. 6(f ) that the difference between experi-
ments and FEM calculations is larger than those of the other
two WGM families. The reason may be that the geometric er-
ror of the FEM model has a relative larger influence on higher
order modes. We found that the FEM results of fundamental
modes are similar in different geometric parameter settings.
However, the FEM results are varied for higher order azimuthal
modes, which could be thereby utilized for dispersion engineer-
ing, as shown in Section 3. Another possible reason is that this
mode is affected by avoided mode crossings. Compared to the
other two WGM results in Figs. 6(b) and 6(d), this mode has
more obvious avoided mode crossings than other mode fami-
lies, which may induce a relative larger difference in measure-
ment results. Optical microresonators can host many transverse
mode families, and these different mode families can interact
with each other and distort the mode spectrum. The dispersion
measurement results can be disturbed by mode crossings, and
sometimes these mode interactions even change the sign of the
effective dispersion in a specified wavelength range [35,59].
One way to reduce the number of mode crossings is to decrease
the transverse modes that can be supported by resonators.
Generally, this can be realized by limiting the cross-section area
of the resonator, namely, decreasing the effective mode area,
and much work has been done in this area [43,60,61]. As the
MgF2 resonators measured here have a relatively larger mode
area compared to that of the SiO2 wedge and Si3N4 ring res-
onators, the mode crossing problem is more serious. In Fig. 7,
the subplots give the measurement results of different azimu-
thal modes of WGMR A. Since these modes are heavily per-
turbed by the mode crossing phenomenon, the fitted curves
show a large deviation with the measured data, making it dif-
ficult to acquire the exact dispersion of these modes. In the
experiment, the fundamental mode of WGMR B was not

found, and the reason may lie in the unfavorable coupling
position of the tapered fiber or the phase matching condition.

When measuring the FSR of a fiber cavity, it is found that
the uncertainty is about�70 kHz, as a non-obvious difference
of overlapped resonance transmission can be observed in this
range. Thus, the accuracy of the fiber cavity FSR is about
0.36%, which also results in the same uncertainty of the micro-
resonator FSR measurement. Further improvement can be car-
ried out by better thermal stability control over both cavities
during measurements.

It should be mentioned that the MgF2 resonators measured
in this paper host birefringence. Since the resonators used here
are z-cut, the TM mode is ordinary light and the TE mode is
extraordinary light. The FEM needs to use the corresponding
Sellmeier equation for the refractive index of MgF2. Actually,
the simulations of WGMRs A and B apply the Sellmeier equa-
tion of ordinary and extraordinary light, respectively. In this
case, numerical simulations are more consistent with the
experimental ones. This could mean that the experimentally
excited modes are TM mode for WGMR A and TE mode
for WGMR B.

Compared to the spectroscopy method for dispersion mea-
surements using a stabilized commercial frequency comb refer-
ence, this approach using a fiber ring cavity etalon provides less
accurate measurements. It results from the fact that this method
relies on many factors. For instance, the binary function fitting
means that only second order dispersion parameters of both
the reference and the microresonator are taken into consider-
ation. Moreover, the sampling rate of the oscilloscope, the di-
mension measurement accuracy of the resonator, and the FEM
estimation accuracy of the dispersion also affect dispersion
measurement. Actually, a better solution is to fully calibrate
the etalon using a fiber comb reference.

Although the dimension measurement accuracy of the res-
onator and the FEM estimation accuracy of the dispersion can
affect dispersion measurement and their influence on measure-
ment results is difficult and complex to estimate, it is still pos-
sible to evaluate the direct measurement results ofDint, which is
used to infer second order dispersion. The measurement of Dint

is based on Eq. (4), and the uncertainties can be obtained by
differentiation of this equation. However, uncertainties caused
by two items that contain δD1 and δD1F cancel each other
since it is similar to the reason why we do not calibrate D1F
in Eq. (6). Thus, the total uncertainties of the measurement
can be expressed as

δDint � D1FδμF − D1δμ�D2FμFδμF

� 1

2
δD2Fμ

2
F � δΔω0 � δT , (7)

where δT is from the relative resonance frequency drift be-
tween microresonator mode and fiber cavity mode including
the temperature drift. In Eq. (7), δμ, δμF are caused by the
oscilloscope sampling since the lowest point of the resonance
dip may be missed by sampling. Although a Lorentz fit of the
resonance dip could improve accuracy, the first two terms on
the left side of the equation exhibit a maximum uncertainty of
200 kHz, which is limited by the sampling precision of the laser
frequency. In an extreme case, these two terms have opposite
signs, and then the total uncertainties of the first two terms are
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Fig. 7. (a) Transmission spectrum of measured mode of WGMR A
with p � 1. (b) Mode spectrum corresponding to (a). The spectrum is
disturbed by many small mode crossings, which makes the dispersion
derived from the data inaccurate. Graphic sign definitions are the same
as in Fig. 6. (c) Transmission spectrum of measured mode of WGMR
Awith p � 3. (d) Mode spectrum corresponding to (c). The spectrum
is seriously affected by various small and large mode crossings. The
parabolic curve fitting has a large deviation from the data points.
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about 400 kHz. The third and forth terms are related to μF ,
and this means the uncertainties become larger with μF increas-
ing. In the dispersion measurement, the maximum of μF is
about 60,000, and δD2F can be estimated by considering
higher dispersion in the fitting of FEM results. Hence, the larg-
est uncertainties caused by third and forth terms are at a level of
10 Hz and 10 kHz, respectively. Compared to the first two
terms, they may be ignored. δΔω0 is a constant, and it makes
the Dint curve move in one direction. Furthermore, this move
can be compensated by data processing, and it should not lead
to an uncertainty of dispersion measurement. As the relative
thermal frequency drift is smaller than 5 MHz/min,
the maximum of δT is estimated at a level of hundreds of
kHz. From the analysis above, it is clear that the measurement
precision of Dint is mainly limited by the sampling and thermal
effect, for which an oscilloscope with a higher sampling rate and
higher precision temperature control on both the microresona-
tor and the fiber cavity can improve the precision.

5. CONCLUSION

In conclusion, we have demonstrated an approach based on a
fiber cavity etalon for microresonator dispersion measurement.
The fiber ring etalon with a high loaded Q reaching one hun-
dred million is cost efficient and easy to prepare. The FSR of
this fiber cavity is measured by sideband modulation spectros-
copy, and the dispersion of the etalon is assessed by binary func-
tion fitting assisted by FEM simulated results. Using this
method, dispersion profiles of two different MgF2 microreso-
nators are obtained and analyzed, showing good agreement
with numerical results. In addition to WGMRs, this method
could also be applied to investigate the dispersion of other op-
tical microresonators. Moreover, we numerically investigated
the influence of geometrical parameters on WGM dispersion
of MgF2 microresonators, and θ1, θ2 are perferable for
dispersion engineering of high order azimuthal modes.
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