• Laser & Optoelectronics Progress
  • Vol. 57, Issue 22, 221106 (2020)
Yican Chen, Xia Wu*, Zhi Luo, Huidong Yang, and Bo Huang*
Author Affiliations
  • College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/LOP57.221106 Cite this Article Set citation alerts
    Yican Chen, Xia Wu, Zhi Luo, Huidong Yang, Bo Huang. Fourier Ptychographic Microscopy Reconstruction Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221106 Copy Citation Text show less
    References

    [1] Sun J S, Zhang Y Z, Chen Q et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Optica Sinica, 36, 1011005(2016).

    [2] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC4169052/

    [3] Zheng G. Fourier ptychographic imaging: a MATLAB tutorial[M]. San Rafael: Morgan & Claypool Publishers, 10-22(2016).

    [4] Fienup J R. Phase retrieval algorithms: a personal tour[J]. Applied Optics, 52, 45-56(2013).

    [5] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [6] Zhao M, Wang X M, Zhang X H et al. Experimental research on macroscopic Fourier ptychography super-resolution imaging[J]. Laser & Optoelectronics Progress, 56, 121101(2019).

    [7] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).

    [8] Lin Z Q, Ma X, Lin J X et al. Fourier ptychographic microscopy based on rotating arc-shaped array of LEDs[J]. Laser & Optoelectronics Progress, 55, 071102(2018).

    [9] Li T, Zhao J F, Mao H F et al. An efficient Fourier ptychographic microscopy imaging method based on angle illumination optimization[J]. Laser & Optoelectronics Progress, 57, 081106(2020).

    [10] Bian L H, Suo J L, Zheng G A et al. Fourier ptychographic reconstruction using wirtinger flow optimization[J]. Optics Express, 23, 4856-4866(2015).

    [11] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724-20744(2016).

    [12] KappelerA, GhoshS, HollowayJ, et al.Ptychnet: CNN based Fourier ptychography[C]∥2017 IEEE International Conference on Image Processing (ICIP). September 17-20, 2017, Beijing, China. New York: IEEE Press, 2017: 1712- 1716.

    [13] Jiang S W, Guo K K, Liao J et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow[J]. Biomedical Optics Express, 9, 3306-3319(2018).

    [14] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [15] Girshick R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile., 1440-1448(2015).

    [16] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [17] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA., 105-114(2017).

    [18] Shi Z T, Wang Z R, Wang R et al. Single image super-resolution based on convolutional neural network[J]. Laser & Optoelectronics Progress, 55, 121001(2018).

    [19] Sun C, Lü J W, Gong J et al. Image super-resolution method combining wavelet transform with deep network[J]. Laser & Optoelectronics Progress, 55, 121006(2018).

    [20] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [21] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 61, 85-117(2015).

    [22] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [23] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA., 2261-2269(2017).

    [24] Tong T, Li G, Liu X J et al. Image super-resolution using dense skip connections[C]∥2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy., 4809-4817(2017).

    [25] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA., 7132-7141(2018).

    [26] Lin M, Chen Q. -03-04) [2020-03-25]. https:∥arxiv., org/abs/1312, 4400(2014).

    [27] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016,, 1874-1883(2016).

    [28] Ioffe S. -03-02) [2020-03-25]. https:∥arxiv., org/abs/1502, 03167(2015).

    [29] Bevilacqua M, Roumy A, Guillemot C et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. [C]∥Procedings of the British Machine Vision Conference 2012. Surrey. British Machine Vision Association, 135(2012).

    [30] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[M]. ∥Curves and surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 711-730(2012).

    [31] Martin D, Fowlkes C, Tal D et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Proceedings Eighth IEEE International Conference on Comput, 416-423(2001).

    [32] Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA., 5197-5206(2015).

    [33] Matsui Y, Ito K, Aramaki Y et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 76, 21811-21838(2017).

    Yican Chen, Xia Wu, Zhi Luo, Huidong Yang, Bo Huang. Fourier Ptychographic Microscopy Reconstruction Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221106
    Download Citation