• Advanced Photonics
  • Vol. 2, Issue 2, 026003 (2020)
Lei Xu1、2, Mohsen Rahmani2、3、4、*, Yixuan Ma1, Daria A. Smirnova3, Khosro Zangeneh Kamali3、4, Fu Deng1, Yan Kei Chiang1, Lujun Huang1, Haoyang Zhang5, Stephen Gould6, Dragomir N. Neshev3、4, and Andrey E. Miroshnichenko1、*
Author Affiliations
  • 1University of New South Wales, School of Engineering and Information Technology, Canberra, Australia
  • 2Nottingham Trent University, School of Science & Technology, Department of Engineering, Advanced Optics and Photonics Laboratory, Nottingham, United Kingdom
  • 3Australian National University, Research School of Physics, Nonlinear Physics Centre, Canberra, Australia
  • 4Australian National University, Research School of Physics, ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Canberra, Australia
  • 5Queensland University of Technology, School of Electrical Engineering and Computer Science, Brisbane, Queensland, Australia
  • 6Australian National University, College of Engineering and Computer Science, Canberra, Australia
  • show less
    DOI: 10.1117/1.AP.2.2.026003 Cite this Article Set citation alerts
    Lei Xu, Mohsen Rahmani, Yixuan Ma, Daria A. Smirnova, Khosro Zangeneh Kamali, Fu Deng, Yan Kei Chiang, Lujun Huang, Haoyang Zhang, Stephen Gould, Dragomir N. Neshev, Andrey E. Miroshnichenko. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003 Copy Citation Text show less
    References

    [1] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).

    [2] C. U. Hail et al. Optical metasurfaces: evolving from passive to adaptive. Adv. Opt. Mater., 7, 1801786(2019).

    [3] S. Chang, X. Guo, X. Ni. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res., 48, 279-302(2018).

    [4] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [5] M. Rahmani et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

    [6] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257(2010).

    [7] B. Luk’yanchuk et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [8] V. V. Khardikov, E. O. Iarko, S. L. Prosvirnin. A giant red shift and enhancement of the light confinement in a planar array of dielectric bars. J. Opt., 14, 035103(2012).

    [9] M. Rahmani, B. Luk’yanchuk, M. Hong. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev., 7, 329-349(2013).

    [10] M. Gupta, R. Singh. Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv. Opt. Mater., 4, 2119-2125(2016).

    [11] Y. Yang et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [12] V. R. Tuz et al. High-quality trapped modes in all-dielectric metamaterials. Opt. Express, 26, 2905-2916(2018).

    [13] S. Campione et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photonics, 3, 2362-2367(2016).

    [14] K. Z. Kamali et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

    [15] L. Xu et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv. Sci., 6, 1802119(2019).

    [16] A. Jain et al. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms. Adv. Opt. Mater., 3, 1431-1438(2015).

    [17] F. Hao et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 3, 643-652(2009).

    [18] N. Liu et al. Three-dimensional plasmon rulers. Science, 332, 1407-1410(2011).

    [19] F. Hao et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 8, 3983-3988(2008).

    [20] K. Bao, N. A. Mirin, P. Nordlander. Fano resonances in planar silver nanosphere clusters. Appl. Phys. A, 100, 333-339(2010).

    [21] N. J. Halas et al. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3961(2011).

    [22] M. Hentschel et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett., 10, 2721-2726(2010).

    [23] M. Rahmani et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett., 12, 2101-2106(2012).

    [24] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [25] L. Carletti et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

    [26] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [27] M. Liu, D.-Y. Choi. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett., 18, 8062-8069(2018).

    [28] Y. He et al. Toroidal dipole bound states in the continuum. Phys. Rev. B, 98, 161112(2018).

    [29] K. Koshelev et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [30] X. Luo et al. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface. Opt. Mater. Express, 10, 358-368(2020).

    [31] L. Carletti et al. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys. Rev. Res., 1, 023016(2019).

    [32] H. K. Gandhi et al. Gain-loss engineering of bound states in the continuum for enhanced nonlinear response in dielectric nanocavities. Opt. Express, 28, 3009-3016(2020).

    [33] R. F. Ndangali, S. V. Shabanov. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders. J. Math. Phys., 51, 102901(2010).

    [34] V. F. Gili et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

    [35] S. Liu et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [36] R. Camacho-Morales et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

    [37] G. Grinblat et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 11, 953-960(2017).

    [38] G. Grinblat et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).

    [39] M. R. Shcherbakov et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [40] E. V. Melik-Gaykazyan et al. Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles. Philos. Trans. R. Soc. A, 375, 20160281(2017).

    [41] E. V. Melik-Gaykazyan et al. Selective third-harmonic generation by structured light in Mie-resonant nanoparticles. ACS Photonics, 5, 728-733(2017).

    [42] A. E. Miroshnichenko et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [43] L. Xu et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl., 7, 44(2018).

    [44] L. Carletti et al. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt. Express, 23, 26544-26550(2015).

    [45] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [46] D. Liu et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).

    [47] A. Mirzaei et al. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett., 105, 011109(2014).

    [48] C. C. Nadell et al. Deep learning for accelerated all-dielectric metasurface design. Opt. Express, 27, 27523-27535(2019).

    [49] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput. Mater., 6, -12(2020).

    [50] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [51] K. Yao, R. Unni, Y. Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339-366(2019).

    [52] Z. Liu et al. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica, 6, 1367-1373(2019).

    [53] L. Gao et al. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 31, 1905467(2019).

    [54] Q. Zhang et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [55] J. Jiang, J. A. Fan. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics(2019).

    [56] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl. Mater. Interfaces, 11, 24264-24268(2019).

    [57] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019).

    [58] P. R. Wiecha et al. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237-244(2019).

    [59] A. Y. Piggott et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [60] T. Asano, S. Noda. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express, 26, 32704-32717(2018).

    [61] G. Carleo et al. Machine learning and the physical sciences. Rev. Mod. Phys., 91, 045002(2019).

    [62] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

    [63] J. A. Hertz. Introduction to the Theory of Neural Computation(2018).

    [64] K. Hornik et al. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989).

    [65] H. Aouani et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol., 9, 290-294(2014).

    [66] J. Lee et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511, 65-69(2014).

    [67] M. Merklein et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun., 6, 6396(2015).

    [68] R. Pant et al. On-chip stimulated Brillouin scattering. Opt. Express, 19, 8285-8290(2011).

    [69] R. Van Laer et al. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics, 9, 199-203(2015).

    [70] G. Grinblat et al. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett., 14, 6660-6665(2014).

    [71] F. Della Picca et al. Tailored hypersound generation in single plasmonic nanoantennas. Nano Lett., 16, 1428-1434(2016).

    [72] H. Aouani et al. Unveiling the origin of third harmonic generation in hybrid ITO-plasmonic crystals. Adv. Opt. Mater., 3, 1059-1065(2015).

    [73] Y. S. Chen et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett., 11, 348-354(2011).

    [74] L. Moreaux et al. Coherent scattering in multi-harmonic light microscopy. Biophys. J., 80, 1568-1574(2001).

    [75] F. Chollet. Keras: deep learning library for Theano and TensorFlow(2015).

    [76] M. G. Moharam et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

    [77] J. P. Hugonin, P. Lalanne. Reticolo software for grating analysis(2005).

    [78] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [79] J. Peurifoy et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [80] I. S. Maksymov, A. E. Miroshnichenko. Active control over nanofocusing with nanorod plasmonic antennas. Opt. Express, 19, 5888-5894(2011).

    [81] M. Galli et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett., 94, 071101(2009).

    [82] F. Medeghini et al. Controlling the quality factor of a single acoustic nanoresonator by tuning its morphology. Nano Lett., 18, 5159-5166(2018).

    [83] Y. Gan, Z. Sun. Crystal structure dependence of the breathing vibration of individual gold nanodisks induced by the ultrafast laser. Appl. Opt., 58, 213-218(2019).

    [84] Y. Sun et al. Opto-mechanical interactions in nanoparticles with magnetic light(2016).

    [85] A. Ivinskaya et al. Optomechanical manipulation with hyperbolic metasurfaces. ACS Photonics, 5, 4371-4377(2018).

    [86] C. Yi et al. Polycrystallinity of lithographically fabricated plasmonic nanostructures dominates their acoustic vibrational damping. Nano Lett., 18, 3494-3501(2018).

    [87] E. Shamonina. World Scientific Handbook of Metamaterials and Plasmonics(2017).

    [88] S. Makarov et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett., 15, 6187-6192(2015).

    [89] J. D. Jackson. Classical Electrodynamics(1999).

    CLP Journals

    [1] Yun Zhao, Yuanmu Yang. Nonlinear metasurfaces: harmonic generation and ultrafast control[J]. Infrared and Laser Engineering, 2020, 49(9): 20201037

    [2] Rocio Camacho-Morales, Davide Rocco, Lei Xu, Valerio Flavio Gili, Nikolay Dimitrov, Lyubomir Stoyanov, Zhonghua Ma, Andrei Komar, Mykhaylo Lysevych, Fouad Karouta, Alexander Dreischuh, Hark Hoe Tan, Giuseppe Leo, Costantino De Angelis, Chennupati Jagadish, Andrey E. Miroshnichenko, Mohsen Rahmani, Dragomir N. Neshev. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036002

    [3] James E. M. Whitehead, Alan Zhan, Shane Colburn, Luocheng Huang, Arka Majumdar. Fast extended depth of focus meta-optics for varifocal functionality[J]. Photonics Research, 2022, 10(3): 828

    [4] Peng Dai, Yasi Wang, Yueqiang Hu, C. H. de Groot, Otto Muskens, Huigao Duan, Ruomeng Huang. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network[J]. Photonics Research, 2021, 9(5): B236

    [5] Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu. Intelligent algorithms: new avenues for designing nanophotonic devices [Invited][J]. Chinese Optics Letters, 2021, 19(1): 011301

    [6] Zihan Zhao, Yue Wang, Xumin Ding, Haoyu Li, Jiahui Fu, Kuang Zhang, Shah Nawaz Burokur, Qun Wu. Compact logic operator utilizing a single-layer metasurface[J]. Photonics Research, 2022, 10(2): 316

    Lei Xu, Mohsen Rahmani, Yixuan Ma, Daria A. Smirnova, Khosro Zangeneh Kamali, Fu Deng, Yan Kei Chiang, Lujun Huang, Haoyang Zhang, Stephen Gould, Dragomir N. Neshev, Andrey E. Miroshnichenko. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003
    Download Citation