• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1714010 (2021)
Lairong Xiao1, Wei Tan1, Liming Liu2, Huan Wang2, Zhenwu Peng1, and Xiaojun Zhao1、*
Author Affiliations
  • 1School of Materials Science and Engineering, Central South University, Changsha , Hunan 410083, China
  • 2Beijing Power Machinery Research Institute, Beijing 100074, China
  • show less
    DOI: 10.3788/LOP202158.1714010 Cite this Article Set citation alerts
    Lairong Xiao, Wei Tan, Liming Liu, Huan Wang, Zhenwu Peng, Xiaojun Zhao. Effect of Post Treatment on the Microstructure and Properties of the GH3536 Alloy Formed by Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714010 Copy Citation Text show less
    References

    [2] Yang H Q, Wang Z Y, Xiao C B et al. Microstructure and mechanical properties of alloy GH22 as insulate plates against heat in industrial gas turbine[J]. Journal of Materials Engineering, 38, 15-19(2010).

    [3] Ma M M, Wang Z M, Wang D Z et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel[J]. Optics & Laser Technology, 45, 209-216(2013).

    [4] Tomus D, Jarvis T, Wu X et al. Controlling the microstructure of hastelloy-X components manufactured by selective laser melting[J]. Physics Procedia, 41, 823-827(2013).

    [5] Tomus D, Rometsch P A, Heilmaier M et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting[J]. Additive Manufacturing, 16, 65-72(2017).

    [6] Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach[J]. Acta Materialia, 94, 59-68(2015).

    [7] Li Y, Xu H J, Li K et al. Effect of volumetric energy density on microstructure and properties of Hastelloy X alloy manufactured by selective laser melting[J]. Materials for Mechanical Engineering, 44, 38-43(2020).

    [8] Xu H J, Li Y, Qi H et al. Effect of hot isostatic pressing process on stress-rupture property of Hastelloy X alloy by selective laser melting[J]. Materials for Mechanical Engineering, 42, 53-57,63(2018).

    [9] Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 141401(2019).

    [10] Hou H P, Liang Y C, He Y L et al. Microstructural evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0202007(2017).

    [11] Zheng Y L, He Y L, Chen X H et al. Elevated-temperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers, 47, 0802008(2020).

    [12] Zhang Y Z, Hou H P, Peng S et al. Anisotropy of microstructure and mechanical properties of Hastelloy X alloy produced by selective laser melting[J]. Journal of Aeronautical Materials, 38, 50-56(2018).

    [13] Chen X J, Zhao G R, Dong D D et al. Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 46, 1202002(2019).

    [14] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [15] Qiu C L, Chen H X, Liu Q et al. On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting[J]. Materials Characterization, 148, 330-344(2019).

    [16] Zhang X Q, Chen H B, Xu L M et al. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy[J]. Materials & Design, 183, 108105(2019).

    [17] Saeidi K, Gao X, Zhong Y et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting[J]. Materials Science and Engineering A, 625, 221-229(2015).

    [18] Wang Z M, Guan K, Gao M et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds, 513, 518-523(2012).

    [19] Zong X W, Liu W J, Zhang S Z et al. Microstructure and crystal orientation of nickel-based superalloy GH3536 by selective laser melting[J]. Rare Metal Materials and Engineering, 49, 3182-3188(2020).

    [20] Sakthivel T, Laha K, Nandagopal M et al. Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X[J]. Materials Science and Engineering: A, 534, 580-587(2012).

    [21] Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X[J]. Materials Science and Engineering A, 293, 112-119(2000).

    [22] Ghasemi A, Kolagar A M, Pouranvari M. Microstructure-performance relationships in gas tungsten arc welded Hastelloy X nickel-based superalloy[J]. Materials Science and Engineering A, 793, 139861(2020).

    [23] Pourbabak S, Montero-Sistiaga M L, Schryvers D et al. Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by selective laser melting[J]. Materials Characterization, 153, 366-371(2019).

    [24] Qin L Y, Wu J B, Wang W et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated using laser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 1002008(2020).

    [25] Hu D Y, Mao J X, Song J et al. Experimental investigation of grain size effect on fatigue crack growth rate in turbine disc superalloy GH4169 under different temperatures[J]. Materials Science and Engineering A, 669, 318-331(2016).

    [26] Jiang R, Everitt S, Lewandowski M et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes[J]. International Journal of Fatigue, 62, 217-227(2014).

    Lairong Xiao, Wei Tan, Liming Liu, Huan Wang, Zhenwu Peng, Xiaojun Zhao. Effect of Post Treatment on the Microstructure and Properties of the GH3536 Alloy Formed by Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714010
    Download Citation