• Photonics Research
  • Vol. 12, Issue 3, 431 (2024)
Josep Martínez-Romeu1、†, Iago Diez1、†, Sebastian Golat2, Francisco J. Rodríguez-Fortuño2, and Alejandro Martínez1、*
Author Affiliations
  • 1Nanophotonics Technology Center, Universitat Politècnica de València, Valencia 46022, Spain
  • 2Department of Physics, King’s College London, London WC2R 2LS, UK
  • show less
    DOI: 10.1364/PRJ.509634 Cite this Article Set citation alerts
    Josep Martínez-Romeu, Iago Diez, Sebastian Golat, Francisco J. Rodríguez-Fortuño, Alejandro Martínez. Chiral forces in longitudinally invariant dielectric photonic waveguides[J]. Photonics Research, 2024, 12(3): 431 Copy Citation Text show less
    References

    [1] J. Jacques, A. Collet, S. H. Wilen. Enantiomers, Racemates and Resolutions(1981).

    [2] C. Genet. Chiral light–chiral matter interactions: an optical force perspective. ACS Photonics, 9, 319-332(2022).

    [3] Y. Zhao, A. A. E. Saleh, M. A. van de Haar. Nanoscopic control and quantification of enantioselective optical forces. Nat. Nanotechnol., 12, 1055-1059(2017).

    [4] A. Canaguier-Durand, J. A. Hutchison, C. Genet. Mechanical separation of chiral dipoles by chiral light. New J. Phys., 15, 123037(2013).

    [5] A. Hayat, J. P. B. Mueller, F. Capasso. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. USA, 112, 13190-13194(2015).

    [6] A. Canaguier-Durand, C. Genet. Chiral route to pulling optical forces and left-handed optical torques. Phys. Rev. A, 92, 043823(2015).

    [7] T. Zhang, M. R. C. Mahdy, Y. Liu. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields. ACS Nano, 11, 4292-4300(2017).

    [8] T. Cao, L. Mao, Y. Qiu. Fano resonance in asymmetric plasmonic nanostructure: separation of sub-10 nm enantiomers. Adv. Opt. Mater., 7, 1801172(2019).

    [9] H. Zheng, X. Li, J. Ng. Tailoring the gradient and scattering forces for longitudinal sorting of generic-size chiral particles. Opt. Lett., 45, 4515-4518(2020).

    [10] Z. Zhang, C. Min, Y. Fu. Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light. Opt. Express, 29, 6282-6292(2021).

    [11] G. Tkachenko, E. Brasselet. Optofluidic sorting of material chirality by chiral light. Nat. Commun., 5, 3577(2014).

    [12] H. Magallanes, E. Brasselet. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photonics, 12, 461-464(2018).

    [13] Y. Shi, T. Zhu, T. Zhang. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light Sci. Appl., 9, 62(2020).

    [14] S. Golat, J. J. Kingsley-Smith, I. Dıez. Optical chiral sorting forces and their manifestation in evanescent waves and nanofibres. arXiv(2023).

    [15] A. Espinosa-Soria, A. Martínez. Transverse spin and spin-orbit coupling in silicon waveguides. IEEE Photonics Technol. Lett., 28, 1561-1564(2016).

    [16] J. E. Vázquez-Lozano, A. Martínez. Toward chiral sensing and spectroscopy enabled by all-dielectric integrated photonic waveguides. Laser Photonics Rev., 14, 1900422(2020).

    [17] L. Fang, J. Wang. Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides. Phys. Rev. Lett., 127, 233902(2021).

    [18] Y. Liu, W. Zhang, L. He. All-optical separation of chiral nanoparticles on silicon-based microfluidic chips with vector exceptional points. APL Photonics, 8, 036112(2023).

    [19] L. Fang, J. Wang. Extraordinary coupled spin and chirality of electromagnetic guided waves. arXiv(2023).

    [20] C. Xiang, W. Jin, J. E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82-A96(2022).

    [21] P. C. Chaumet, A. Rahmani. Electromagnetic force and torque on magnetic and negative-index scatterers. Opt. Express, 17, 2224-2234(2009).

    [22] M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina. Optical forces on small magnetodielectric particles. Opt. Express, 18, 11428-11443(2010).

    [23] P. A. Belov, S. I. Maslovski, K. R. Simovski. A condition imposed on the electromagnetic polarizability of a bianisotropic lossless scatterer. Tech. Phys. Lett., 29, 718-720(2003).

    [24] I. Sersic, C. Tuambilangana, T. Kampfrath. Magnetoelectric point scattering theory for metamaterial scatterers. Phys. Rev. B, 83, 245102(2011).

    [25] J. Mun, M. Kim, Y. Yang. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl., 9, 139(2020).

    [26] H. Chen, C. Liang, S. Liu. Chirality sorting using two-wave-interference–induced lateral optical force. Phys. Rev. A, 93, 053833(2016).

    [27] S. Wang, C. Chan. Lateral optical force on chiral particles near a surface. Nat. Commun., 5, 3307(2014).

    [28] N. Kravets, A. Aleksanyan, H. Chraïbi. Optical enantioseparation of racemic emulsions of chiral microparticles. Phys. Rev. Appl., 11, 044025(2019).

    [29] G. Schnoering, S. Albert, A. Canaguier-Durand. Chiral thermodynamics in tailored chiral optical environments. Phys. Rev. X, 11, 041022(2021).

    [30] T. Horai, H. Eguchi, T. Iida. Formulation of resonant optical force based on the microscopic structure of chiral molecules. Opt. Express, 29, 38824-38840(2021).

    [31] P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations(1992).

    [32] S. Kieninger, B. G. Keller. Path probability ratios for Langevin dynamics—exact and approximate. J. Chem. Phys., 154, 094102(2021).

    [33] J. W. Swan, J. F. Brady. Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids, 19, 113306(2007).

    [34] J. B. Knight, A. Vishwanath, J. P. Brody. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett., 80, 3863-3866(1998).

    [35] L. Castelló-Pedrero, M. I. Gómez-Gómez, J. García-Rupérez. Performance improvement of a silicon nitride ring resonator biosensor operated in the tm mode at 1310  nm. Biomed. Opt. Express, 12, 7244-7260(2021).

    [36] M. Li, S. Yan, Y. Zhang. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. Nanoscale Adv., 3, 6897-6902(2021).

    [37] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin hall effect of light. Science, 348, 1448-1451(2015).

    [38] J. R. Arias-González, M. Nieto-Vesperinas. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A, 20, 1201-1209(2003).

    [39] D. L. Ermak, J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69, 1352-1360(1978).

    [40] S. W. Smith. Chiral toxicology: it’s the same thing…only different. Toxicol. Sci., 110, 4-30(2009).

    Josep Martínez-Romeu, Iago Diez, Sebastian Golat, Francisco J. Rodríguez-Fortuño, Alejandro Martínez. Chiral forces in longitudinally invariant dielectric photonic waveguides[J]. Photonics Research, 2024, 12(3): 431
    Download Citation