• Photonics Research
  • Vol. 12, Issue 3, 431 (2024)
Josep Martínez-Romeu1、†, Iago Diez1、†, Sebastian Golat2, Francisco J. Rodríguez-Fortuño2, and Alejandro Martínez1、*
Author Affiliations
  • 1Nanophotonics Technology Center, Universitat Politècnica de València, Valencia 46022, Spain
  • 2Department of Physics, King’s College London, London WC2R 2LS, UK
  • show less
    DOI: 10.1364/PRJ.509634 Cite this Article Set citation alerts
    Josep Martínez-Romeu, Iago Diez, Sebastian Golat, Francisco J. Rodríguez-Fortuño, Alejandro Martínez. Chiral forces in longitudinally invariant dielectric photonic waveguides[J]. Photonics Research, 2024, 12(3): 431 Copy Citation Text show less

    Abstract

    We calculate numerically the optical chiral forces in rectangular cross-section dielectric waveguides for potential enantiomer separation. Our study considers force strength and time needed for separating chiral nanoparticles, mainly via quasi-TE guided modes at short wavelengths (405 nm) and the 90°-phase-shifted combination of quasi-TE and quasi-TM modes at longer wavelengths (1310 nm). Particle tracking simulations show successful enantiomer separation within two seconds. These results suggest the feasibility of enantiomeric separation of nanoparticles displaying sufficient chirality using simple silicon photonic integrated circuits, with wavelength selection based on the nanoparticle size.
    F=12[(E)p*+μ(H)m*interactionk4η6π(p*×m)recoil].

    View in Article

    p=αeεE+i1cαcH,m=αmHi1ηαcE,

    View in Article

    α0e=4πr3(εpεm)(μp+2μm)κ2(εp+2εm)(μp+2μm)κ2,α0m=4πr3(εp+2εm)(μpμm)κ2(εp+2εm)(μp+2μm)κ2,α0c=12πr3κ(εp+2εm)(μp+2μm)κ2,

    View in Article

    αe=α0eik36π(α0c2α0eα0m)1+(k36π)2(α0c2α0eα0m)ik36π(α0e+α0m),αm=α0mik36π(α0c2α0eα0m)1+(k36π)2(α0c2α0eα0m)ik36π(α0e+α0m),αc=α0c1+(k36π)2(α0c2α0eα0m)ik36π(α0e+α0m).

    View in Article

    We=14ε|E|2[Jm3],Wm=14μ|H|2[Jm3],G=12ωcJ(E·H*)[J·sm3],Se=14ωJ(εE*×E)[J·sm3],Sm=14ωJ(μH*×H)[J·sm3],Π=12E×H*[Wm2].

    View in Article

    Fchiral=ω(αc)Ghelicity gradient1cJ(αc)×Πvortex+(2kJ(αc)k43π(αe*αc))ωSeelectric spin+(2kJ(αc)k43π(αc*αm))ωSmmagnetic spin,Fachiral=(αe)Weelectric gradient+(αm)Wmmagnetic gradientω×(J(αe)Se+J(αm)Sm)spincurl+(kcJ(αe+αm)k46π1c((αe*αm)+|αc|2))Πradiation pressurek46π1cJ(αe*αm)JΠflow,

    View in Article

    0=γdxdtfriction+Foptical+γ2Dξ(t)stochastic,

    View in Article

    x(m+1)=x(m)+Mx,(m)Fx(m)Δt+2Mx,(m)kBTΔt  Nx(0,1),y(m+1)=y(m)+My,(m)Fy(m)Δt+2My,(m)kBTΔt  Ny(0,1),z(m+1)=z(m)+Mz,||(m)Fz(m)Δt+2Mz,||(m)kBTΔt  Nz(0,1),

    View in Article

    tsort=3πηkBTrF2(1+1+F(L0+Δx)kBT)2.

    View in Article

    md2xdt2=γdxdtfriction+Foptical+γ2Dξ(t)stochastic.(A1)

    View in Article

    0=γdxdt+F+γ2Dξ(t),(A2)

    View in Article

    x(m+1)=x(m)+Mx,(m)Fx(m)Δt+2Mx,(m)kBTΔt  Nx(0,1),y(m+1)=y(m)+My,(m)Fy(m)Δt+2My,(m)kBTΔt  Ny(0,1),z(m+1)=z(m)+Mz,||(m)Fz(m)Δt+2Mz,||(m)kBTΔt  Nz(0,1),(A3)

    View in Article

    Δtτ=mγ=ρSiO243πr36πηr=2ρSiO2r29η2.4  ns.(A4)

    View in Article

    ΔtΔxminγmax|F|162  μs,(A5)

    View in Article

    M(h)=M(198(rh)+12(rh)318(rh)5),M||(h)=M(1916(rh)+18(rh)3116(rh)5),(A6)

    View in Article

    (+)-EF=N+N++N,()-EF=NN++N.(A7)

    View in Article

    dopt=Fγt,(B1)

    View in Article

    dB=2Dt,(B2)

    View in Article

    2dopt=L0+2dB+Δx,(B3)

    View in Article

    2Fγt=L0+22Dt+Δx.(B4)

    View in Article

    tsort=γFD2(1+1+F(L0+Δx)Dγ),(B5)

    View in Article

    tsort=3πηkBTrF2(1+1+F(L0+Δx)kBT)2.(B6)

    View in Article

    Josep Martínez-Romeu, Iago Diez, Sebastian Golat, Francisco J. Rodríguez-Fortuño, Alejandro Martínez. Chiral forces in longitudinally invariant dielectric photonic waveguides[J]. Photonics Research, 2024, 12(3): 431
    Download Citation