• Journal of Inorganic Materials
  • Vol. 35, Issue 12, 1357 (2020)
Yiyuan YAN1, Jiangwei JU2, Meiyan YU1, Shougang CHEN1、*, and Guanglei CUI2、*
Author Affiliations
  • 1School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
  • 2Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
  • show less
    DOI: 10.15541/jim20200152 Cite this Article
    Yiyuan YAN, Jiangwei JU, Meiyan YU, Shougang CHEN, Guanglei CUI. In-situ Polymerization Integrating 3D Ceramic Framework in All Solid-state Lithium Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357 Copy Citation Text show less
    References

    [1] Z GAO, H SUN, L FU et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Advanced Materials, 30, e1705702(2018).

    [2] J C BACHMAN, S MUY, A GRIMAUD et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews, 116, 140-162(2016).

    [3] F ZHENG, M KOTOBUKI, S SONG et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 389, 198-213(2018).

    [4] B ZHANG, R TAN, L YANG et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 10, 139-159(2018).

    [5] R CHEN, W QU, X GUO et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 3, 487-516(2016).

    [6] L FAN, S WEI, S LI et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Advanced Energy Materials, 8, 1702657(2018).

    [7] L YUE, J MA, J ZHANG et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164(2016).

    [8] A MANTHIRAM, X YU, S WANG. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2, 16103(2017).

    [9] Y GAO, D WANG, Y C LI et al. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed, 57, 13608-13612(2018).

    [10] L BUANNIC, B ORAYECH. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 29, 1769-1778(2017).

    [11] Z ZHANG, Y SHAO, B LOTSCH et al. New horizons for inorganic solid state ion conductors. Energy & Environmental Science, 11, 1945-1976(2018).

    [12] X B CHENG, C Z ZHAO, Y X YAO et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium- metal anodes. Chem, 5, 74-96(2019).

    [13] W ZHA, F CHEN, D YANG et al. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. Journal of Power Sources, 397, 87-94(2018).

    [14] P ZHU, C YAN, M DIRICAN et al. Li0.33La0.557TiO3 ceramic nanofiber- enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 6, 4279-4285(2018).

    [15] Z WAN, D LEI, W YANG et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Advanced Functional Materials, 29, 1805301(2019).

    [16] L CHEN, Y LI, S P LI et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer- in-ceramic”. Nano Energy, 46, 176-184(2018).

    [17] H XIE, C YANG, K K FU et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 8, 1703474(2018).

    [18] J BAE, Y LI, J ZHANG et al. A 3D nanostructured hydrogel- framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed, 57, 2096-2100(2018).

    [19] J BAE, Y LI, F ZHAO et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 15, 46-52(2018).

    [20] Y LIU, Q SUN, Y ZHAO et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Applied Materials & Interfaces, 10, 31240-31248(2018).

    [21] J JU, Y WANG, B CHEN et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 10, 13588-13597(2018).

    [22] Q ZHAO, X LIU, S STALIN et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 4, 365-373(2019).

    [23] H DUAN, Y X YIN, Y SHI et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 140, 82-85(2018).

    [24] N PARANJAPE, P C MANDADAPU, G WU et al. Highly- branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer, 111, 1-8(2017).

    [25] X BAN, W ZHANG, N CHEN et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. The Journal of Physical Chemistry C, 122, 9852-9858(2018).

    [26] Y GONG, K FU, S XU et al. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Materials Today, 21, 594-601(2018).

    [27] D LI, L CHEN, T WANG et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Applied Materials & Interfaces, 10, 7069-7078(2018).

    [28] Z LI, H M HUANG, J K ZHU et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Applied Materials & Interfaces, 11, 784-791(2019).

    [29] Q WANG, Z WEN, J JIN et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. (Camb), 52, 1637-1640(2016).

    [30] X HAN, Y GONG, K K FU et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 16, 572-579(2017).

    [31] J JU, F CHEN, C XIA. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochimica Acta, 136, 422-429(2014).

    [32] B WU, S WANG, J LOCHALA et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 11, 1803-1810(2018).

    [33] J L HU, J TIAN, C L Li. Nanostructured carbon nitride polymer- reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Applied Materials & Interfaces, 9, 11615-11625(2017).

    [34] J L HU, Z G YAO, K Y CHEN et al. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Materials, 28, 37-46(2020).

    Yiyuan YAN, Jiangwei JU, Meiyan YU, Shougang CHEN, Guanglei CUI. In-situ Polymerization Integrating 3D Ceramic Framework in All Solid-state Lithium Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357
    Download Citation