• Photonics Research
  • Vol. 8, Issue 4, 610 (2020)
Bowen Sheng1、2, Gordon Schmidt1、6、*, Frank Bertram1, Peter Veit1, Yixin Wang2, Tao Wang2, Xin Rong2, Zhaoying Chen2, Ping Wang2, Jürgen Bläsing1, Hideto Miyake3, Hongwei Li4, Shiping Guo4, Zhixin Qin2, André Strittmatter1, Bo Shen2、5, Jürgen Christen1, and Xinqiang Wang2、5、7、*
Author Affiliations
  • 1Institute of Physics, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
  • 2State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 3Department of Electrical and Electronic Engineering, Mie University, Mie 514-8507, Japan
  • 4Advanced Micro-Fabrication Equipment Inc., Shanghai 201201, China
  • 5Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
  • 6e-mail: Gordon.Schmidt@ovgu.de
  • 7e-mail: wangshi@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.384508 Cite this Article Set citation alerts
    Bowen Sheng, Gordon Schmidt, Frank Bertram, Peter Veit, Yixin Wang, Tao Wang, Xin Rong, Zhaoying Chen, Ping Wang, Jürgen Bläsing, Hideto Miyake, Hongwei Li, Shiping Guo, Zhixin Qin, André Strittmatter, Bo Shen, Jürgen Christen, Xinqiang Wang. Individually resolved luminescence from closely stacked GaN/AlN quantum wells[J]. Photonics Research, 2020, 8(4): 610 Copy Citation Text show less
    References

    [1] X. Rong, X. Wang, S. V. Ivanov, X. Jiang, G. Chen, P. Wang, W. Wang, C. He, T. Wang, T. Schulz, M. Albrecht. High-output-power ultraviolet light source from quasi-2D GaN quantum structure. Adv. Mater., 28, 7978-7983(2016).

    [2] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express, 10, 031002(2017).

    [3] C. Liu, Y. K. Ooi, S. M. Islam, H. Xing, D. Jena, J. Zhang. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl. Phys. Lett., 112, 011101(2018).

    [4] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally. Single gallium nitride nanowire lasers. Nat. Mater., 1, 106-110(2002).

    [5] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [6] Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, S. Gwo. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett., 14, 4381-4388(2014).

    [7] L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, R. Songmuang. Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. Nano Lett., 10, 2939-2943(2010).

    [8] H. P. T. Nguyen, M. Djavid, S. Y. Woo, X. Liu, A. T. Connie, S. Sadaf, Q. Wang, G. A. Botton, I. Shih, Z. Mi. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep., 5, 7744(2015).

    [9] K. H. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol., 10, 140-144(2015).

    [10] S. Deshpande, J. Heo, A. Das, P. Bhattacharya. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nat. Commun., 4, 1675(2013).

    [11] M. J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett., 2, 982-986(2014).

    [12] U. Rössler, J. Christen. Characterization of semiconductor interfaces with atomic scale resolution by luminescence. Festkörperprobleme, 30(1990).

    [13] M. A. Herman, D. Bimberg, J. Christen. Heterointerfaces in quantum wells and epitaxial growth processes: evaluation by luminescence techniques. J. Appl. Phys., 70, R1-R52(1991).

    [14] J. Christen, M. Grundmann, D. Bimberg. Scanning cathodoluminescence microscopy: a unique approach to atomic-scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities. J. Vacuum Sci. Technol. B, 9, 2358-2368(1991).

    [15] M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov. Ultranarrow luminescence lines from single quantum dots. Phys. Rev. Lett., 74, 4043-4046(1995).

    [16] G. Schmidt, C. Berger, P. Veit, S. Metzner, F. Bertram, J. Bläsing, A. Dadgar, A. Strittmatter, J. Christen, G. Callsen, S. Kalinowski, A. Hoffmann. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: a source of single photons in the ultraviolet. Appl. Phys. Lett., 106, 252101(2015).

    [17] N. Yamamoto, H. Itoh, V. Grillo, S. F. Chichibu, S. Keller, J. S. Speck, S. P. DenBaars, U. K. Mishra, S. Nakamura, G. Salviati. Cathodoluminescence characterization of dislocations in gallium nitride using a transmission electron microscope. J. Appl. Phys., 94, 4315-4319(2003).

    [18] S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, S. Gradecak. Direct correlation between structural and optical properties of III–V nitride nanowire heterostructures with nanoscale resolution. Nano Lett., 9, 3940-3944(2009).

    [19] L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, M. Kociak. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure. Nano Lett., 11, 568-573(2010).

    [20] J. T. Griffiths, S. Zhang, B. Rouet-Leduc, W. Y. Fu, A. Bao, D. Zhu, D. J. Wallis, A. Howkins, I. Boyd, D. Stowe, M. J. Kappers, C. J. Humphreys, R. A. Oliver. Nanocathodoluminescence reveals mitigation of the stark shift in InGaN quantum wells by Si doping. Nano Lett., 15, 7639-7643(2015).

    [21] M. Kociak, L. F. Zagonel. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy, 176, 112-131(2017).

    [22] Y. Wang, X. Rong, S. Ivanov, V. Jmerik, Z. Chen, H. Wang, T. Wang, P. Wang, P. Jin, Y. Chen, V. Kozlovsky, D. Sviridov, M. Zverev, E. Zhdanova, N. Gamov, V. Studenov, H. Miyake, H. Li, S. Guo, X. Yang, F. Xu, T. Yu, Z. Qin, W. Ge, B. Shen, X. Wang. Deep ultraviolet light source from ultrathin GaN/AlN MQW structures with output power over 2 Watt. Adv. Opt. Mater., 7, 1801763(2019).

    [23] G. Schmidt, M. Müller, P. Veit, F. Bertram, J. Christen, M. Glauser, J. F. Carlin, G. Cosendey, R. Butté, N. Grandjean. Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence. Appl. Phys. Lett., 105, 032101(2014).

    [24] A. Urban, M. Müller, C. Karbaum, G. Schmidt, P. Veit, J. Malindretos, F. Bertram, J. Christen, A. Rizzi. Optical emission of individual GaN nanocolumns analyzed with high spatial resolution. Nano Lett., 15, 5105-5109(2015).

    [25] D. Simeonov. Synthesis and optical investigation of single polar GaN/AlN quantum dots(2009).

    [26] D. Bayerl, S. M. Islam, C. M. Jones, V. Protasenko, D. Jena, E. Kioupakis. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett., 109, 241102(2016).

    [27] W. Sun, C. K. Tan, N. Tansu. AlN/GaN Digital alloy for mid-and deep-ultraviolet optoelectronics. Sci. Rep., 7, 11826(2017).

    [28] J. Singh, K. K. Bajaj. Quantum mechanical theory of linewidths of localized radiative transitions in semiconductor alloys. Appl. Phys. Lett., 48, 1077-1079(1986).

    [29] J. Christen, D. Bimberg. Line shapes of intersubband and excitonic recombination in quantum wells: influence of final-state interaction, statistical broadening, and momentum conservation. Phys. Rev. B, 42, 7213-7219(1990).

    [30] B. Bastek, F. Bertram, J. Christen, T. Hempel, A. Dadgar, A. Krost. Analysis of point defects in AlN epilayers by cathodoluminescence spectroscopy. Appl. Phys. Lett., 95, 032106(2009).

    [31] J. I. Goldstein, O. Johari, J. L. Costley, G. W. Lorimer, R. J. B. Reed. Quantitative X-ray analysis in the electron microscope. Scanning Electron Microscopy(1977).

    [32] L. Reimer, H. Kohl. Transmission Electron Microscopy: Physics of Image Formation, 36(2008).

    [33] R. K. Willardson, J. O. Dimmock, A. C. Beer. Introduction to the theory of exciton states in semiconductors. Semiconductors and Semimetals, Volume 3, Optical Properties of III-V Compounds(1967).

    [34] J. T. Griffiths, S. Zhang, J. Lhuillier, D. Zhu, W. Y. Fu, A. Howkins, I. Boyd, D. Stowe, D. J. Wallis, C. J. Humphreys, R. A. Oliver. Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold. J. Appl. Phys., 120, 165704(2016).

    [35] G. Steude, T. Christmann, B. K. Meyer, A. Goeldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, I. Akasaki. Optical investigations of AlGaN on GaN epitaxial films. Mater. Res. Soc. Symp. Proc., 537, G3.26(1998).

    [36] B. Gil, B. Guizal, D. Felbacq, G. Bouchitté. Quantitative interpretation of the excitonic splittings in aluminum nitride. Eur. Phys. J.-Appl. Phys., 53, 20303(2011).

    [37] S. Chichibu, K. Wada, S. Nakamura. Spatially resolved cathodoluminescence spectra of InGaN quantum wells. Appl. Phys. Lett., 71, 2346-2348(1997).

    [38] K. Okamoto, J. Choi, Y. Kawakami, M. Terazima, T. Mukai, S. Fujita. Submicron-scale photoluminescence of InGaN/GaN probed by confocal scanning laser microscopy. Jpn. J. Appl. Phys., 43, 839-840(2004).

    [39] K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi. Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm. Appl. Phys. Lett., 81, 2291-2293(2002).

    [40] K. Jarašiūnas, P. Ščajev, S. Nargelas, R. Aleksiejūnas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, H. Morkoç. Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques. Proc. SPIE, 8262, 82620G(2012).

    [41] G. P. Yablonskii, A. L. Gurskii, V. N. Pavlovskii, E. V. Lutsenko, V. Z. Zubialevich, T. S. Shulga, A. I. Stognij, H. Kalisch, A. Szymakowski, R. H. Jansen, A. Alam. Nanocathodoluminescence reveals mitigation of the stark shift in InGaN quantum wells by Si doping. J. Cryst. Growth, 275, e1733-e1738(2005).

    [42] H. C. Casey, B. I. Miller, E. Pinkas. Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers. J. Appl. Phys., 44, 1281-1287(1973).

    [43] A. K. Viswanath, J. I. Lee, D. Kim, C. R. Lee, J. Y. Leem. Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B, 58, 16333-16339(1998).

    [44] M. Feneberg, R. A. Leute, B. Neuschl, K. Thonke, M. Bickermann. High-excitation and high-resolution photoluminescence spectra of bulk AlN. Phys. Rev. B, 82, 075208(2010).

    [45] G. Schmidt. Optische Nanocharakterisierung GaN-basierter Quantenstrukturen für Mikroaktivitäten(2017).

    [46] O. Lopatiuk-Tirpak, L. Chernyak, B. A. Borisov, V. V. Kuryatkov, S. A. Nikishin, K. Gartsman. Electron irradiation-induced increase of minority carrier diffusion length, mobility, and lifetime in Mg-doped AlN/AlGaN short period superlattice. Appl. Phys. Lett., 91, 182103(2007).

    [47] K. Lim Sung, M. Brewster, F. Qian, Y. Li, C. M. Lieber, S. Gradečak. Direct correlation between structural and optical properties of III–V nitride nanowire heterostructures with nanoscale resolution. Nano Lett., 9, 3940-3944(2009).

    [48] L. H. M. Tizei, M. Kociak. Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties. Nanotechnology, 23, 175702(2012).

    [49] L. F. Zagonel, L. Rigutti, M. Tchernycheva, G. Jacopin, R. Songmuang, M. Kociak. Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology, 23, 455205(2012).

    [50] Z. Mahfoud, A. T. Dijksman, C. Javaux, P. Bassoul, A.-L. Baudrion, J. Plain, B. Dubertret, M. Kociak. Cathodoluminescence in a scanning transmission electron microscope: a nanometer-scale counterpart of photoluminescence for the study of II-VI quantum dots. J. Phys. Chem. Lett., 4, 4090-4094(2013).

    Bowen Sheng, Gordon Schmidt, Frank Bertram, Peter Veit, Yixin Wang, Tao Wang, Xin Rong, Zhaoying Chen, Ping Wang, Jürgen Bläsing, Hideto Miyake, Hongwei Li, Shiping Guo, Zhixin Qin, André Strittmatter, Bo Shen, Jürgen Christen, Xinqiang Wang. Individually resolved luminescence from closely stacked GaN/AlN quantum wells[J]. Photonics Research, 2020, 8(4): 610
    Download Citation