• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141007 (2019)
Cheng Zhao1 and Yongdong Huang1、2、*
Author Affiliations
  • 1 Institute of Image Processing and Understanding, North Minzu University, Yinchuan, Ningxia 750021, China
  • 2 Center of Mathematics and Information Science, Dalian Minzu University, Dalian, Liaoning 116600, China
  • show less
    DOI: 10.3788/LOP56.141007 Cite this Article Set citation alerts
    Cheng Zhao, Yongdong Huang. Infrared and Visible Image Fusion via Rolling Guidance Filtering and Hybrid Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141007 Copy Citation Text show less
    References

    [1] Xu H, Wang Y, Wu Y J et al. Infrared and multi-type images fusion algorithm based on contrast pyramid transform[J]. Infrared Physics & Technology, 78, 133-146(2016).

    [2] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 36, 961-1005(1990).

    [3] Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 57, 235-245(1995).

    [4] Wu Z G, Wang Y J. Image fusion algorithm using curvelet transform based on the edge detection[J]. Optical Technique, 35, 682-685, 690(2009).

    [5] Cai W, Li M, Li X Y. Infrared and visible image fusion scheme based on contourlet transform. [C]∥2009 Fifth International Conference on Image and Graphics, September 20-23, 2009, Xi'an, Shaanxi, China. New York: IEEE, 516-520(2009).

    [6] Aishwarya N, Bennila Thangammal C. Visible and infrared image fusion using DTCWT and adaptive combined clustered dictionary[J]. Infrared Physics & Technology, 93, 300-309(2018).

    [7] Lewis J J. O'Callaghan R J, Nikolov S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 8, 119-130(2007).

    [8] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 31, 532-540(1983).

    [9] Petrovic V S, Xydeas C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 13, 228-237(2004).

    [10] Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 9, 245-253(1989).

    [11] Adu J H, Gan J H, Wang Y et al. Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J]. Infrared Physics & Technology, 61, 94-100(2013).

    [12] Wu Y Q, Tao F X. Multispectral and panchromatic image fusion based on improved projected gradient NMF in NSST domain[J]. Acta Optica Sinica, 35, 0410005(2015).

    [13] Zhou Z Q, Wang B, Li S et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 30, 15-26(2016).

    [14] Jiang Z T, Wu H, Zhou X L. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 38, 0210002(2018).

    [15] Zhang Q, Shen X Y, Xu L et al. Rolling guidance filter[M]. ∥Zhang Q, Shen X Y, Xu L, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8691, 815-830(2014).

    [16] Cheng B Y, Jin L X, Li G N. Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain[J]. Infrared Physics & Technology, 92, 30-43(2018).

    [17] Wang J J, Li Q, Jia Z H et al. A novel multi-focus image fusion method using PCNN in nonsubsampled contourlet transform domain[J]. Optik, 126, 2508-2511(2015).

    [18] Ma J L, Zhou Z Q, Wang B et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 82, 8-17(2017).

    [19] Li S T, Yang B, Hu J W. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 12, 74-84(2011).

    [20] Nencini F, Garzelli A, Baronti S et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 8, 143-156(2007).

    [21] Sruthy S, Parameswaran L, Sasi A P. Image fusion technique using DT-CWT. [C]∥2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (IMac4s), March 22-23, 2013, Kottayam, India. New York: IEEE, 160-164(2013).

    [22] Zhang B H, Lu X Q, Jia W T. A multi-focus image fusion algorithm based on an improved dual-channel PCNN in NSCT domain[J]. Optik, 124, 4104-4109(2013).

    [23] Yin M, Duan P H, Liu W et al. A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation[J]. Neurocomputing, 226, 182-191(2017).

    [24] Li H, Wu X J[EB/OL]. Infrared and visible image fusion using latent low-rank representation.

    [25] Ma J Y, Chen C, Li C et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).

    [26] Naidu V P S. Image fusion technique using multi-resolution singular value decomposition[J]. Defence Science Journal, 61, 479-484(2011).

    [27] Qu G H, Zhang D L, Yan P F. Information measure for performance of image fusion[J]. Electronics Letters, 38, 313-315(2002).

    [28] Feng X, Zeng Z M, Feng H et al. A method for evaluating the disturbance in distributed vibration sensor based on wavelet information entropy[J]. Acta Optica Sinica, 33, 1106005(2013).

    [29] Balasubramaniam P, Ananthi V P. Image fusion using intuitionistic fuzzy sets[J]. Information Fusion, 20, 21-30(2014).

    [30] Wang H D, Yao X. Objective reduction based on nonlinear correlation information entropy[J]. Soft Computing, 20, 2393-2407(2016).

    [31] Chen H, Varshney P K. A human perception inspired quality metric for image fusion based on regional information[J]. Information Fusion, 8, 193-207(2007).

    Cheng Zhao, Yongdong Huang. Infrared and Visible Image Fusion via Rolling Guidance Filtering and Hybrid Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141007
    Download Citation