• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141007 (2019)
Cheng Zhao1 and Yongdong Huang1、2、*
Author Affiliations
  • 1 Institute of Image Processing and Understanding, North Minzu University, Yinchuan, Ningxia 750021, China
  • 2 Center of Mathematics and Information Science, Dalian Minzu University, Dalian, Liaoning 116600, China
  • show less
    DOI: 10.3788/LOP56.141007 Cite this Article Set citation alerts
    Cheng Zhao, Yongdong Huang. Infrared and Visible Image Fusion via Rolling Guidance Filtering and Hybrid Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141007 Copy Citation Text show less
    Basic framework of RGF
    Fig. 1. Basic framework of RGF
    Smooth results of RGF corresponding to different σr values
    Fig. 2. Smooth results of RGF corresponding to different σr values
    Construction based on hybrid multi-scale decomposition
    Fig. 3. Construction based on hybrid multi-scale decomposition
    Five sets of infrared and visible images used in test. (a) Un camp; (b) Octec; (c) Steamboat; (d) Kayak; (e) Infrared4-Visible4
    Fig. 4. Five sets of infrared and visible images used in test. (a) Un camp; (b) Octec; (c) Steamboat; (d) Kayak; (e) Infrared4-Visible4
    Fusion results obtained by different fusion methods applied in “Un camp” image
    Fig. 5. Fusion results obtained by different fusion methods applied in “Un camp” image
    Fusion results obtained by different fusion methods applied in “Octec” image
    Fig. 6. Fusion results obtained by different fusion methods applied in “Octec” image
    Fusion results obtained by different fusion methods applied in “Steamboat” image
    Fig. 7. Fusion results obtained by different fusion methods applied in “Steamboat” image
    Fusion results obtained by different fusion methods applied in “Kayak” image
    Fig. 8. Fusion results obtained by different fusion methods applied in “Kayak” image
    Fusion results obtained by different fusion methods applied in “Infrared4-Visible4” image
    Fig. 9. Fusion results obtained by different fusion methods applied in “Infrared4-Visible4” image
    Statistical polygonal images of different objective evaluation indicators
    Fig. 10. Statistical polygonal images of different objective evaluation indicators
    Three-dimensional data images of “Octec”
    Fig. 11. Three-dimensional data images of “Octec”
    Three-dimensional data images of “Infrared4-Visible4”
    Fig. 12. Three-dimensional data images of “Infrared4-Visible4”
    σrSTDSFEI
    0.10.14700.03050.0936
    0.010.15140.04230.1290
    0.0010.15200.04430.1477
    0.00010.15210.04430.1481
    0.000010.15210.04430.1481
    0.20.14570.02640.0909
    0.020.15050.03990.1147
    0.0020.15200.04420.1466
    0.00020.15210.04430.1481
    0.000020.15210.04430.1481
    Table 1. Objective evaluation indicators of visible image corresponding to different σr values
    ImageIndexDWTCVTDTCWTNSCT-DAPCNNNSDTSTLATLRRGTFMSVDours
    MI0.19160.18930.20110.20720.18020.24100.27930.21650.2841
    STD0.10290.09880.09740.07180.13320.10700.10510.08920.1152 (2)
    Un campQNCIE0.80290.80290.80300.80300.80290.80340.80410.80310.8039 (2)
    QCV425.1803461.3446426.053423.8996540.9333332.3001661.3364424.1480293.6759
    IE0.47090.46850.45600.45800.61320.62680.60260.45000.8334
    MI0.38760.37580.41270.42830.38380.44720.51760.46280.5200
    STD0.11670.11750.11360.11170.21320.11750.09590.10800.1573 (2)
    OctecQNCIE0.80660.80640.80700.80710.80730.80730.80890.80750.8094
    QCV648.2625408.1675629.2341626.6379391.1703274.64852264.01902.5192.0751
    IE0.96130.96450.96720.96600.96350.99340.83370.82981.0000
    MI0.25760.24180.26950.27380.29110.29080.62840.29650.4514 (2)
    STD0.05240.04820.04790.04490.1240.04980.13310.04150.0769 (3)
    SteamboatQNCIE0.80450.80430.80460.80460.80520.80470.81170.80470.8068 (2)
    QCV163.4563169.6701167.6022173.5677298.9255208.9697331.4260178.0732138.259
    IE0.39500.37420.37100.35670.61370.45270.57500.35160.7979
    MI0.44710.37860.44920.51840.49230.46960.54690.61980.5195(3)
    STD0.07310.07280.06960.06690.17070.06730.08640.06470.1444 (2)
    KayakQNCIE0.80590.80490.80580.80700.80700.80610.80720.80870.8087
    QCV876.5883622.103864.7246791.0015798.335855.55833060.6697.9614135.6981
    IE0.02790.02240.02070.01320.76510.02620.01910.00710.9980
    MI0.24850.24610.28660.27540.25520.29430.23900.28520.3233
    STD0.14650.13660.13640.12890.16970.14320.13300.12430.1707
    Infrared4-Visible4QNCIE0.80350.80340.80440.80380.80360.80400.80340.80390.8046
    QCV1133.91056.21502.31076.91845.6924.23831972.31045.83718.6361
    IE0.76430.75880.75110.74740.89730.87450.84500.73640.9504
    Table 2. Objective evaluation indicators of different fusion methods
    ImagesDWTCVTDTCWTNSCT-DAPCNNNSDTSTLATLRRGTFMSVDours
    Un camp0.67072.16430.540841.7589101.5510227.67681.52590.164519.0259 (6)
    Octec0.29241.83120.4142139.7033326.4207218.30827.80890.508758.0978 (6)
    Steamboat0.28561.85110.4191118.7886267.4719251.77167.13310.435549.8169 (6)
    Kayak0.27771.85180.3950117.9741257.4367245.73366.29760.610449.4241 (6)
    Infrare4-Visible40.30541.88400.411527.812067.3537220.71371.12740.265311.6429 (6)
    Table 3. Running-time of eight other methods and proposed method
    Cheng Zhao, Yongdong Huang. Infrared and Visible Image Fusion via Rolling Guidance Filtering and Hybrid Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141007
    Download Citation