• Chinese Optics Letters
  • Vol. 20, Issue 1, 013701 (2022)
Hao Sun1, Jianghua Zhang2, Yuhua Tang1, Hengzhu Liu1, Jie Yang2, and Xin Zheng2、*
Author Affiliations
  • 1College of Computer, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Beijing 100010, China
  • show less
    DOI: 10.3788/COL202220.013701 Cite this Article Set citation alerts
    Hao Sun, Jianghua Zhang, Yuhua Tang, Hengzhu Liu, Jie Yang, Xin Zheng. Ultrafast all-optical switching of dual-band plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2022, 20(1): 013701 Copy Citation Text show less
    References

    [1] T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, S. Zhang. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800(2018).

    [2] H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, H. Lee. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 7, 1801205(2019).

    [3] K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, G. Kumar. Plasmon-induced transparency in graphene-based terahertz metamaterials. EPL, 120, 27005(2017).

    [4] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [5] A. Ahmadivand, B. Gerislioglu, Z. Ramezani. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale, 11, 8091(2019).

    [6] M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater., 29, 1605881(2017).

    [7] P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, R. Singh. Chalcogenide phase change material for active terahertz photonics. Adv. Mater., 31, 1808157(2019).

    [8] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon., 2, 295(2008).

    [9] N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis. Optically implemented broadband blueshift switch in the terahertz regime. Phys. Rev. Lett., 106, 037403(2011).

    [10] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, J.-B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 9, 4909(2018).

    [11] M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, D. N. Basov. Voltage switching of a VO2 memory metasurface using ionic gel. Appl. Phys. Lett., 105, 041117(2014).

    [12] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater., 30, 1802760(2018).

    [13] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 68, 104280(2020).

    [14] J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photon. Res., 7, 994(2019).

    [15] J. Ji, S. Zhou, W. Wang, F. Ling, J. Yao. Active control of terahertz plasmon-induced transparency in the hybrid metamaterial/monolayer MoS2/Si structure. Nanoscale, 11, 9429(2019).

    [16] P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, C. Lee. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv. Opt. Mater., 4, 541(2016).

    [17] C. Liu, P. Liu, C. Yang, Y. Lin, H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 142, 354(2019).

    [18] S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl’Innocenti. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Adv. Opt. Mater., 6, 1800570(2018).

    [19] Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, H. Yang. Graphene terahertz modulators by ionic liquid gating. Adv. Mater., 27, 1874(2015).

    [20] W. Y. Kim, H.-D. Kim, T.-T. Kim, H.-S. Park, K. Lee, H. J. Choi, S. H. Lee, J. Son, N. Park, B. Min. Graphene–ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat. Commun., 7, 10429(2016).

    [21] Z. Xu, Y.-S. Lin. A stretchable terahertz parabolic‐shaped metamaterial. Adv. Opt. Mater., 7, 1900379(2019).

    [22] J. Ji, S. Zhou, W. Wang, C. Luo, Y. Liu, F. Ling, J. Yao. Active multifunctional terahertz modulator based on plasmonic metasurface. Opt. Express, 27, 2363(2019).

    [23] S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936(2012).

    [24] M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, T. E. Murphy. Tunable terahertz hybrid metal–graphene plasmons. Nano Lett., 15, 7099(2015).

    [25] S. Xiao, T. Wang, T. Liu, C. Zhou, X. Jiang, J. Zhang. Active metamaterials and metadevices: a review. J. Phys. D: Appl. Phys., 53, 503002(2020).

    [26] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [27] Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, W. Zhang. Dual control of active graphene-silicon hybrid metamaterial devices. Carbon, 90, 146(2015).

    [28] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [29] H. Sun, Y. Hu, Y. Tang, J. You, J. Zhou, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photon. Res., 8, 263(2020).

    [30] H. Sun, J. Yang, H. Liu, D. Wu, X. Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials. Chin. Opt. Lett., 19, 013602(2021).

    [31] H. Sun, Y. Tang, Y. Hu, J. You, H. Liu, X. Zheng. Active formatting modulation of electromagnetically induced transparency in metamaterials. Chin. Opt. Lett., 18, 092402(2020).

    [32] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz frequency and phase tuning by all‐optical molecularization of metasurfaces. Adv. Opt. Mater., 7, 1901050(2019).

    [33] J. Zhou, C. Zhang, Q. Liu, J. You, X. Zheng, X. Cheng, T. Jiang. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics, 9, 2797(2020).

    [34] Y. Hu, T. Jiang, H. Sun, M. Tong, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photon. Rev., 14, 1900338(2020).

    [35] Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng, T. Jiang. Pump‐color selective control of ultrafast all‐optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [36] R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, G. Kumar. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial. Sci. Rep., 9, 18068(2019).

    [37] J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, H. Zhang. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci. Rep., 4, 6128(2014).

    [38] Y. Wang, M. Tao, Z. Pei, X. Yu, B. Wang, J. Jiang, X. He. Tunable bandwidth of double electromagnetic induced transparency windows in terahertz graphene metamaterial. RSC Adv., 8, 37057(2018).

    [39] K. Zhang, C. Wang, L. Qin, R.-W. Peng, D.-H. Xu, X. Xiong, M. Wang. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial. Opt. Lett., 39, 3539(2014).

    [40] F. Bagci, B. Akaoglu. Single and multi-band electromagnetically induced transparency-like effects with a four-fold symmetric metamaterial design. Mater. Res. Express, 6, 055806(2019).

    [41] K. M. Devi, D. R. Chowdhury, G. Kumar, A. K. Sarma. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J. Appl. Phys., 124, 063106(2018).

    [42] C. Sun, J. Si, Z. Dong, X. Deng. Tunable multispectral plasmon induced transparency based on graphene metamaterials. Opt. Express, 24, 11466(2016).

    [43] S. Hu, H. Yang, S. Han, X. Huang, B. Xiao. Tailoring dual-band electromagnetically induced transparency in planar metamaterials. J. Appl. Phys., 117, 043107(2015).

    [44] C. Tang, Q. Niu, B.-X. Wang, W.-Q. Huang. Design of dual-band plasmon-induced transparent effect based on composite structure of closed-ring and square patch. Plasmonics, 14, 533(2019).

    [45] Z. Dong, C. Sun, J. Si, X. Deng. Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface. Opt. Express, 25, 12251(2017).

    [46] J. Kim, R. Soref, W. R. Buchwald. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial. Opt. Express, 18, 17997(2010).

    Data from CrossRef

    [1] Fangqi Chen, Yong Liu, Tao Ding. Fast and hydrosensitive switching of plasmonic nanocavities via photothermal effect. Photonics Research, 11, 12(2023).

    Hao Sun, Jianghua Zhang, Yuhua Tang, Hengzhu Liu, Jie Yang, Xin Zheng. Ultrafast all-optical switching of dual-band plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2022, 20(1): 013701
    Download Citation