• Journal of Semiconductors
  • Vol. 44, Issue 8, 082802 (2023)
Amgad A. Al-Saman1、2, Eugeny A. Ryndin3, Xinchuan Zhang2, Yi Pei2、*, and Fujiang Lin1、**
Author Affiliations
  • 1School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
  • 2Dynax Semiconductor Inc., Suzhou 215300, China
  • 3Department of Micro- and Nanoelectronics, Saint Petersburg Electrotechnical University, Saint Petersburg 197376, Russia
  • show less
    DOI: 10.1088/1674-4926/44/8/082802 Cite this Article
    Amgad A. Al-Saman, Eugeny A. Ryndin, Xinchuan Zhang, Yi Pei, Fujiang Lin. Analytical model of non-uniform charge distribution within the gated region of GaN HEMTs[J]. Journal of Semiconductors, 2023, 44(8): 082802 Copy Citation Text show less
    References

    [1] A A Al-Saman, Y Pei, E A Ryndin et al. Accurate temperature estimation for each gate of GaN HEMT with n-gate fingers. IEEE Trans Electron Devices, 67, 3577(2020).

    [2] K Hoo Teo, Y H Zhang, N Chowdhury et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 130, 160902(2021).

    [3] M Meneghini, C De Santi, I Abid et al. GaN-based power devices: Physics, reliability, and perspectives. J Appl Phys, 130, 181101(2021).

    [4] G Q Zhu, C Chang, Y H Xu et al. A small-signal model extraction and optimization method for AlGaN/GaN HEMT up to 110 GHz. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 111(2020).

    [5] G Q Zhu, C Chang, Y H Xu et al. A millimeter-wave scalable small-signal modeling approach based on FW-EM for AlGaN/GaN HEMT up to 110 GHz. Microw Opt Technol Lett, 63, 2145(2021).

    [6] A A Al-Saman, E A Ryndin, Y Pei et al. An estimation of 2DEG density for GaN HEMT using analytical equation considering the charge conservation low. Solid State Electron, 188, 108209(2022).

    [7] N Anbuselvan, P Amudhalakshmi, N Mohankumar. Analytical modeling of 2DEG and 2DHG charge balancing in quaternary Al0.42In0.03Ga0.55N/Al0.3In0.7NAl0.42In0.03Ga0.55N/Al0.3In0.7N HEMTs. J Comput Electron, 17, 1191(2018).

    [8] K Jena, R Swain, T R Lenka. Physics-based mathematical model of 2DEG sheet charge density and DC characteristics of AlInN/AlN/GaN MOSHEMT. Int J Numer Model Electron Netw Devices Fields, 30, e2117(2017).

    [9] S Khandelwal, Y S Chauhan, T A Fjeldly. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 59, 2856(2012).

    [10] S Khandelwal, N Goyal, T A Fjeldly. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 58, 3622(2011).

    [11] A Ashok, D Vasileska, O L Hartin et al. Electrothermal Monte Carlo simulation of GaN HEMTs including electron–electron interactions. IEEE Trans Electron Devices, 57, 562(2010).

    [12] J Si, J Wei, W J Chen et al. Electric field distribution around drain-side gate edge in AlGaN/GaN HEMTs: Analytical approach. IEEE Trans Electron Devices, 60, 3223(2013).

    [13] T Sadi, R W Kelsall, N J Pilgrim. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method. IEEE Trans Electron Devices, 53, 2892(2006).

    [14] S Yamakawa, S Goodnick, S Aboud et al. Quantum corrected full-band cellular Monte Carlo simulation of AlGaN/GaN HEMTs. J Comput Electron, 3, 299(2004).

    [15] A Minetto, B Deutschmann, N Modolo et al. Hot-electron effects in AlGaN/GaN HEMTs under semi-ON DC stress. IEEE Trans Electron Devices, 67, 4602(2020).

    [16] E A Ryndin, A Al-Saman. A novel approach to model high-speed microelectronic switch on the basis of hydrodynamic approximation. International Conference on Micro- and Nano-Electronics 2018, 128(2019).

    [17] X D Wang, W D Hu, X S Chen et al. The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans Electron Devices, 59, 1393(2012).

    [18] A Asgari, M Kalafi, L Faraone. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys E, 28, 491(2005).

    [19] S Khandelwal, Y S Chauhan, T A Fjeldly et al. ASM GaN: Industry standard model for GaN RF and power devices—Part 1: DC, CV, and RF model. IEEE Trans Electron Devices, 66, 80(2019).

    [20] S Ali Albahrani, D Mahajan, J Hodges et al. ASM GaN: Industry standard model for GaN RF and power devices—Part-II: Modeling of charge trapping. IEEE Trans Electron Devices, 66, 87(2019).

    [21] U Radhakrishna, P Choi, J Grajal et al. Study of RF-circuit linearity performance of GaN HEMT technology using the MVSG compact device model. 2016 IEEE International Electron Devices Meeting (IEDM), 3.7.1(2017).

    [22] U Radhakrishna, T Imada, T Palacios et al. MIT virtual source GaNFET-high voltage (MVSG-HV) model: A physics based compact model for HV-GaN HEMTs. Phys Status Solidi C, 11, 848(2014).

    [23] S Khandelwal, F M Yigletu, B Iñiguez et al. A charge-based capacitance model for AlGaAs/GaAs HEMTs. Solid State Electron, 82, 38(2013).

    [24] V Palankovski, R Quay. Analysis and Simulation of Heterostructure Devices(2004).

    Amgad A. Al-Saman, Eugeny A. Ryndin, Xinchuan Zhang, Yi Pei, Fujiang Lin. Analytical model of non-uniform charge distribution within the gated region of GaN HEMTs[J]. Journal of Semiconductors, 2023, 44(8): 082802
    Download Citation