• Photonics Research
  • Vol. 7, Issue 2, 182 (2019)
Maciej Kowalczyk1、*, Tadeusz Martynkien2, Paweł Mergo3, Grzegorz Soboń1, and Jarosław Sotor1
Author Affiliations
  • 1Laser & Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • 2Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • 3Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, Lublin, Poland
  • show less
    DOI: 10.1364/PRJ.7.000182 Cite this Article Set citation alerts
    Maciej Kowalczyk, Tadeusz Martynkien, Paweł Mergo, Grzegorz Soboń, Jarosław Sotor. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF2 laser[J]. Photonics Research, 2019, 7(2): 182 Copy Citation Text show less
    References

    [1] P. Herman, B. Maliwal, H. J. Lin, J. Lakowicz. Frequency-domain fluorescence microscopy with the LED as a light source. J. Microsc., 203, 176-181(2001).

    [2] M. V. Sarunic, S. Weinberg, J. A. Izatt. Full-field swept-source phase microscopy. Opt. Lett., 31, 1462-1464(2006).

    [3] S. R. Chinn, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 22, 340-342(1997).

    [4] M. Wojtkowski. High-speed optical coherence tomography: basics and applications. Appl. Opt., 49, D30-D61(2010).

    [5] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [6] U. Sharma, E. W. Chang, S. H. Yun. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth. Opt. Express, 16, 19712-19723(2008).

    [7] V. M. Kodach, J. Kalkman, D. J. Faber, T. G. van Leeuwen. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm. Biomed. Opt. Express, 1, 176-185(2010).

    [8] S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, V. J. Srinivasan. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography. Opt. Lett., 40, 4911-4914(2015).

    [9] C. Chong, T. Suzuki, A. Morosawa, T. Sakai. Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. Opt. Express, 16, 21105-21118(2008).

    [10] S. Yamashita, M. Asano. Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Opt. Express, 14, 9299-9306(2006).

    [11] S. Yamashita. Dispersion-tuned swept lasers for optical coherence tomography. IEEE J. Sel. Top. Quantum Electron., 24, 6800109(2018).

    [12] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 14, 3225-3237(2006).

    [13] F. M. Mitschke, L. F. Mollenauer. Discovery of the soliton self-frequency shift. Opt. Lett., 11, 659-661(1986).

    [14] N. Nishizawa, T. Goto. Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers. IEEE Photon. Technol. Lett., 11, 325-327(1999).

    [15] J. H. Lee, J. Van Howe, C. Xu, X. Liu, S. Member. Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron., 14, 713-723(2008).

    [16] G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, J. Sotor. Generation of sub-100 fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser. Photon. Res., 5, 151-155(2017).

    [17] G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, J. Sotor. All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range. Photon. Res., 6, 368-372(2018).

    [18] N. Akhmediev, M. Karlsson. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A, 51, 2602-2607(1995).

    [19] G. Chang, L.-J. Chen, F. X. Kärtner. Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation. Opt. Lett., 35, 2361-2363(2010).

    [20] T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, T. Goto. Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator. IEEE Photon. Technol. Lett., 13, 13-15(2001).

    [21] M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, O. E. Martinez. Femtosecond soliton source with fast and broad spectral tunability. Opt. Lett., 34, 842-844(2009).

    [22] K. Sumimura, T. Ohta, N. Nishizawa. Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses. Opt. Lett., 33, 2892-2894(2008).

    [23] K. Sumimura, Y. Genda, T. Ohta, K. Itoh, N. Nishizawa. Quasi-supercontinuum generation using 1.06  μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography. Opt. Lett., 35, 3631-3633(2010).

    [24] D. Auston. Transverse mode locking. IEEE J. Quantum Electron., 4, 420-422(1968).

    [25] P. W. Smith. Simultaneous phase‐locking of longitudinal and transverse laser modes. Appl. Phys. Lett., 13, 235-237(1968).

    [26] D. Côté, H. M. van Driel. Period doubling of a femtosecond Ti:sapphire laser by total mode locking. Opt. Lett., 23, 715-717(1998).

    [27] S. R. Bolton, R. A. Jenks, C. N. Elkinton, G. Sucha. Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser. J. Opt. Soc. Am. B, 16, 339-344(1999).

    [28] M. Kowalczyk, A. Major, J. Sotor. High peak power ultrafast Yb:CaF2 oscillator pumped by a single-mode fiber-coupled laser diode. Opt. Express, 25, 26289-26295(2017).

    [29] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102-112(2013).

    [30] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [31] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers [Invited]. Opt. Express, 26, 9432-9463(2018).

    Maciej Kowalczyk, Tadeusz Martynkien, Paweł Mergo, Grzegorz Soboń, Jarosław Sotor. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF2 laser[J]. Photonics Research, 2019, 7(2): 182
    Download Citation