• Journal of Semiconductors
  • Vol. 44, Issue 12, 121801 (2023)
Chenglin Du1、2, Ran Ye1、2、*, Xiaolong Cai1、2、**, Xiangyang Duan1、2, Haijun Liu2, Yu Zhang2, Gang Qiu2, and Minhan Mi3
Author Affiliations
  • 1State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518055, China
  • 2Wireless Product Planning Department, ZTE Corporation, Shenzhen 518055, China
  • 3School of Microelectronics, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1088/1674-4926/44/12/121801 Cite this Article
    Chenglin Du, Ran Ye, Xiaolong Cai, Xiangyang Duan, Haijun Liu, Yu Zhang, Gang Qiu, Minhan Mi. A review on GaN HEMTs: nonlinear mechanisms and improvement methods[J]. Journal of Semiconductors, 2023, 44(12): 121801 Copy Citation Text show less
    References

    [1] E A Jones, F F Wang, D Costinett. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerg Sel Top Power Electron, 4, 707(2016).

    [2] S Singh, T Chaudhary, G Khanna. Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices. Silicon, 14, 5793(2022).

    [3] F Roccaforte, P Fiorenza, G Greco et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron Eng, 187/188, 66(2018).

    [4] R Aubry, J C Jacquet, M Oualli et al. ICP-CVD SiN passivation for high-power RF InAlGaN/GaN/SiC HEMT. IEEE Electron Device Lett, 37, 629(2016).

    [5] V Kumar, W Lu, R Schwindt et al. AlGaN/GaN HEMTs on SiC with fT of over 120 GHz. IEEE Electron Device Lett, 23, 455(2002).

    [6] Y C Zhang, K Wei, S Huang et al. High-temperature-recessed millimeter-wave AlGaN/GaN HEMTs with 42.8% power-added-efficiency at 35 GHz. IEEE Electron Device Lett, 39, 727(2018).

    [7] H H Du, J C Zhang, H Zhou et al. GaN high-electron-mobility-transistor on free- standing GaN substrate with low contact resistance and state-of-the-art fT × LG value. IEEE Trans Electron Devices, 69, 968(2022).

    [8] M Micovic, D F Brown, D Regan et al. High frequency GaN HEMTs for RF MMIC applications, 653(2016).

    [9] J Tan, K S Yuk, G R Branner. Design of a high power, wideband power amplifier using AlGaN/GaN HEMT, 1(2017).

    [10] R Joshi, M H Liu, S S H Hsu. A high efficiency compact class F GaN MMIC power amplifier for 5G applications, 1103(2021).

    [11] G Polli, A Del Gaudio, A De Padova et al. A high-performance C-band integrated front-end in AlGaN/GaN technology, 1(2018).

    [12] F Iucolano, T Boles. GaN-on-Si HEMTs for wireless base stations. Mater Sci Semicond Process, 98, 100(2019).

    [13] L C Nunes, P M Cabral, J C Pedro. AM/AM and AM/PM distortion generation mechanisms in Si LDMOS and GaN HEMT based RF power amplifiers. IEEE Trans Microw Theory Tech, 62, 799(2014).

    [14] A Cheaito, M Crussiere, Y Louet et al. EVM derivation for multicarrier signals: Joint impact of non-linear amplification and predistortion, 1(2015).

    [15] J C Pedro, L C Nunes, P M Cabral. Soft compression and the origins of nonlinear behavior of GaN HEMTs, 1297(2014).

    [16] K W Kobayashi. Bias optimized IP2 & IP3 linearity and NF of a decade-bandwidth GaN MMIC feedback amplifier, 479(2012).

    [17] L Guan, A D Zhu. Green communications: Digital predistortion for wideband RF power amplifiers. IEEE Microw Mag, 15, 84(2014).

    [18] P Choi, U Radhakrishna, C C Boon et al. Linearity enhancement of a fully integrated 6-GHz GaN power amplifier. IEEE Microw Wirel Compon Lett, 27, 927(2017).

    [19] J J Ren. A new digital predistortion algorithms scheme of feedback FIR cross-term memory polynomial model for short-wave power amplifier. IEEE Access, 8, 38327(2020).

    [20] P M Tomé, F M Barradas, T R Cunha et al. Hybrid analog/digital linearization of GaN HEMT-based power amplifiers. IEEE Trans Microw Theory Tech, 67, 288(2019).

    [21] M T Abuelma'atti, A M T Abuelmaatti, T Yeung et al. Linearization of GaN power amplifier using feedforward and predistortion techniques, 282(2011).

    [22] K Moore, B Green, S Klingbeil et al. High performance 150 mm RF GaN technology with low memory effects, 1(2021).

    [23] C K Lin, J H Du, A Wang et al. Pure-play GaN foundry technology for RF applications, 188(2015).

    [24] S Nayak, M Y Kao, H T Chen et al. 0.15 μm GaN MMIC manufacturing technology for 2-50 GHz power applications. Conference on Compound Semiconductor Manufacturing Technology, Scottsdale, Arizona, USA, 43(2015).

    [25] W Nagy, J Brown, R Borges et al. Linearity characteristics of microwave-power GaN HEMTs. IEEE Trans Microw Theory Tech, 51, 660(2003).

    [26] E R Srinidhi, G Kompa. Investigation of IMD3 in GaN HEMT based on extended volterra series analysis, 52(2007).

    [27] A Ahmed, S S Islam, A F M Anwar. A temperature-dependent nonlinear analysis of GaN/AlGaN HEMTs using Volterra series. IEEE Trans Microw Theory Tech, 49, 1518(2001).

    [28] J A Garcia, A M Sanchez, J C Pedro et al. Characterizing the gate-to-source nonlinear capacitor role on GaAs FET IMD performance. IEEE Trans Microw Theory Tech, 46, 2344(1998).

    [29] H Sarbishaei, D Y T Wu, S Boumaiza. Linearity of GaN HEMT RF power amplifiers-a circuit perspective, 1(2012).

    [30] S Joglekar, U Radhakrishna, D Piedra et al. Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation, 25.3.1(2018).

    [31] S A Maas. Nonlinear microwave and RF circuits. 2nd ed. Artech House(1997).

    [32] A Tarakji, H Fatima, X Hu et al. Large-signal linearity in III-N MOSDHFETs. IEEE Electron Device Lett, 24, 369(2003).

    [33] J A Garcia, T Aballo, A Mediavilla et al. Characterizing the Igs(Vgs) nonlinearity for describing its contribution to FET large-signal intermodulation distortion, 80(2006).

    [34] Z H Liu, G I Ng, S Arulkumaran et al. Improved linearity for low-noise applications in 0.25-μm GaN MISHEMTs using ALD Al2O3 as gate dielectric. IEEE Electron Device Lett, 31, 803(2010).

    [35] C H Oxley, M J Uren, A Coates et al. On the temperature and carrier density dependence of electron saturation velocity in an AlGaN/GaN HEMT. IEEE Trans Electron Devices, 53, 565(2006).

    [36] B K Ridley, W J Schaff, L F Eastman. Hot-phonon-induced velocity saturation in GaN. J Appl Phys, 96, 1499(2004).

    [37] T Fang, R H Wang, H L Xing et al. Effect of optical phonon scattering on the performance of GaN transistors. IEEE Electron Device Lett, 33, 709(2012).

    [38] S Bajaj, O F Shoron, P S Park et al. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors. Appl Phys Lett, 107, 153504(2015).

    [39] J R Juang, T Y Huang, T M Chen et al. Transport in a gated Al0.18Ga0.82N/GaN electron system. J Appl Phys, 94, 3181(2003).

    [40] T Li, R P Joshi, C Fazi. Monte Carlo evaluations of degeneracy and interface roughness effects on electron transport in AlGaN–GaN heterostructures. J Appl Phys, 88, 829(2000).

    [41] T Palacios, S Rajan, A Chakraborty et al. Influence of the dynamic access resistance in the g/sub m/and f/sub T/linearity of AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 52, 2117(2005).

    [42] J M Tirado, F Mieville, X Zhao et al. Origin of the increasing access resistance in AlGaN/GaN HEMTs, 203(2008).

    [43] Y R Wu, M Singh, J Singh. Sources of transconductance collapse in III-V nitrides-consequences of velocity-field relations and source/gate design. IEEE Trans Electron Devices, 52, 1048(2005).

    [44] R J Trew, Y Y Liu, L Bilbro et al. Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs. IEEE Trans Microw Theory Tech, 54, 2061(2006).

    [45] M Yang, Z J Lin, J T Zhao et al. Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs. IEEE Trans Electron Devices, 63, 1471(2016).

    [46] C H Chen, R Sadler, D Wang et al. The causes of GaN HEMT bell-shaped transconductance degradation. Solid State Electron, 126, 115(2016).

    [47] J Kuzmik, R Javorka, A Alam et al. Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Trans Electron Devices, 49, 1496(2002).

    [48] O Mitrofanov, M Manfra. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices Microstruct, 34, 33(2003).

    [49] J M Tirado, J L Sanchez-Rojas, J I Izpura. Trapping effects in the transient response of AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 54, 410(2007).

    [50] W D Hu, X S Chen, W Lu. Intrinsic mechanism of drain-lag and current collapse in GaN-based HEMTs, 1(2009).

    [51] S C Binari, K Ikossi, J A Roussos et al. Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 48, 465(2001).

    [52] G Meneghesso, G Verzellesi, R Pierobon et al. Surface-related drain current dispersion effects in AlGaN-GaN HEMTs. IEEE Trans Electron Devices, 51, 1554(2004).

    [53] S Mollah, M Gaevski, K Hussain et al. Current collapse in high-Al channel AlGaN HFETs. Appl Phys Express, 12, 074001(2019).

    [54] J M Tirado, J L Sanchez-Rojas, J I Izpura. Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices. Semicond Sci Technol, 21, 1150(2006).

    [55] M Meneghini, N Ronchi, A Stocco et al. Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method. IEEE Trans Electron Devices, 58, 2996(2011).

    [56] R Vetury, N Q Zhang, S Keller et al. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans Electron Devices, 48, 560(2001).

    [57] Y Saito, R Tsurumaki, N Noda et al. Analysis of reduction in lag phenomena and current collapse in field-plate AlGaN/GaN HEMTs with high acceptor density in a buffer layer. IEEE Trans Device Mater Reliab, 18, 46(2018).

    [58] G Meneghesso, M Meneghini, D Bisi et al. Trapping phenomena in AlGaN/GaN HEMTs: A study based on pulsed and transient measurements. Semicond Sci Technol, 28, 074021(2013).

    [59] J F Du, N T Chen, Z G Jiang et al. Study on transconductance non-linearity of AlGaN/GaN HEMTs considering acceptor-like traps in barrier layer under the gate. Solid State Electron, 115, 60(2016).

    [60] S C Binari, P B Klein, T E Kazior. Trapping effects in GaN and SiC microwave FETs. Proc IEEE, 90, 1048(2002).

    [61] E Kohn, I Daumiller, P Schmid et al. Large signal frequency dispersion of AlGaN/GaN heterostructure field effect transistors. Electron Lett, 35, 1022(1999).

    [62] S X Xie, V Paidi, S Heikman et al. High linearity GaN HEMT power amplifier with pre-linearization gate diode. IEEE Lester Eastman Conference on High Performance Devices, Troy, NY, USA, 223(2004).

    [63] K M Bothe, S Ganguly, J Guo et al. Improved X-band performance and reliability of a GaN HEMT with Sunken source connected field plate design. IEEE Electron Device Lett, 43, 354(2022).

    [64] Y F Wu, A Saxler, M Moore et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett, 25, 117(2004).

    [65] D F Brown, Y Tang, D A Regan et al. Self-aligned AlGaN/GaN FinFETs. IEEE Electron Device Lett, 38, 1445(2017).

    [66] J Q Zhang, L Wang, L A Li et al. Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate. Chin Phys B, 25, 087308(2016).

    [67] I Khalil, E Bahat-Treidel, F Schnieder et al. Improving the linearity of GaN HEMTs by optimizing epitaxial structure. IEEE Trans Electron Devices, 56, 361(2009).

    [68] R Aggarwal, A Agrawal, M Gupta et al. Improved linearity performance of AlGaN/GaN MISHFET over conventional HFETs: An optimization study for wireless infrastructure applications. Superlattices Microstruct, 50, 1(2011).

    [69] M T Hasan, T Asano, H Tokuda et al. Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs. IEEE Electron Device Lett, 34, 1379(2013).

    [70] T Suemitsu, K Kobayashi, S Hatakeyama et al. A new process approach for slant field plates in GaN-based high-electron-mobility transistors. Jpn J Appl Phys, 55, 01AD02(2016).

    [71] J H Shao, J N Deng, W Lu et al. Nanofabrication of 80 nm asymmetric T shape gates for GaN HEMTs. Microelectron Eng, 189, 6(2018).

    [72] S Arulkumaran, T Egawa, H Ishikawa et al. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2,  Si3N4, and silicon oxynitride. Appl Phys Lett, 84, 613(2004).

    [73] A V Vertiatchikh, L F Eastman, W J Schaff et al. Effect of surface passivation of AlGaN/GaN heterostructure field-effect transistor. Electron Lett, 38, 388(2002).

    [74] J Bernát, P Javorka, A Fox et al. Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs. Solid State Electron, 47, 2097(2003).

    [75] B Luo, J W Johnson, J Kim et al. Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett, 80, 1661(2002).

    [76] B P Gila, G T Thaler, A H Onstine et al. New dielectrics for gate oxides and surface passivation on GaN, 130(2005).

    [77] S Joglekar, M Azize, E J Jones et al. Impact of Al2O3 passivation on AlGaN/GaN nanoribbon high-electron-mobility transistors. IEEE Trans Electron Devices, 63, 318(2016).

    [78] A D Koehler, N Nepal, T J Anderson et al. Atomic layer epitaxy AlN for enhanced AlGaN/GaN HEMT passivation. IEEE Electron Device Lett, 34, 1115(2013).

    [79] M Oh, J W Yang, H Kim et al. Electrical characteristics of AlGaN/GaN high-electron-mobility transistors fabricated with a MgF2 passivation layer. J Korean Phys Soc, 76, 278(2020).

    [80] Y S Lin, S F Lin, W C Hsu. Microwave and power characteristics of AlGaN/GaN/Si high-electron mobility transistors with HfO2 and TiO2 passivation. Semicond Sci Technol, 30, 015016(2015).

    [81] B M Green, K K Chu, E M Chumbes et al. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett, 21, 268(2000).

    [82] B J Ansell, I Harrison, C T Foxon. The effect of surface passivation and illumination on the device properties of AlGaN/GaN HFETs. Phys Stat Sol (a), 188, 279(2001).

    [83] W Lu, V Kumar, R Schwindt et al. A comparative study of surface passivation on AlGaN/GaN HEMTs. Solid State Electron, 46, 1441(2002).

    [84] J L Liu, M H Mi, J J Zhu et al. Improved power performance and the mechanism of AlGaN/GaN HEMTs using Si-rich SiN/Si3N4 bilayer passivation. IEEE Trans Electron Devices, 69, 631(2022).

    [85] G J Jing, X H Wang, S Huang et al. Mechanism of linearity improvement in GaN HEMTs by low pressure chemical vapor deposition-SiNx passivation. IEEE Trans Electron Devices, 69, 6610(2022).

    [86] P Kordoš, J Bernát, M Marso. Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT. Microelectron J, 36, 438(2005).

    [87] G Meneghesso, F Rampazzo, P Kordos et al. Current collapse and high-electric-field reliability of unpassivated GaN/AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 53, 2932(2006).

    [88] T Kikkawa, M Nagahara, N Okamoto et al. Surface-charge controlled AlGaN/GaN-power HFET without current collapse and gm dispersion. International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 25.4.1(2001).

    [89] O Mitrofanov, M Manfra, N Weimann. Impact of Si doping on radio frequency dispersion in unpassivated GaN/AlGaN/GaN high-electron-mobility transistors grown by plasma-assisted molecular-beam epitaxy. Appl Phys Lett, 82, 4361(2003).

    [90] M J Uren, J Moreke, M Kuball. Buffer design to minimize current collapse in GaN/AlGaN HFETs. IEEE Trans Electron Devices, 59, 3327(2012).

    [91] D Y Chen, A Malmros, M Thorsell et al. Microwave performance of ‘buffer-free’ GaN-on-SiC high electron mobility transistors. IEEE Electron Device Lett, 41, 828(2020).

    [92] Y X Yao, S Huang, Q M Jiang et al. Identification of semi-ON-state current collapse in AlGaN/GaN HEMTs by drain current deep level transient spectroscopy. IEEE Electron Device Lett, 43, 200(2022).

    [93] Y Kumazaki, T Ohki, J Kotani et al. Over 80% power-added-efficiency GaN high-electron-mobility transistors on free-standing GaN substrates. Appl Phys Express, 14, 016502(2021).

    [94] R Ye, X L Cai, C L Du et al. An overview on analyses and suppression methods of trapping effects in AlGaN/GaN HEMTs. IEEE Access, 10, 21759(2022).

    [95] D S Lee, H Wang, A Hsu et al. Nanowire channel InAlN/GaN HEMTs with high linearity of gm and fT. IEEE Electron Device Lett, 34, 969(2013).

    [96] D Hisamoto, W C Lee, J Kedzierski et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices, 47, 2320(2000).

    [97] Y H Zhang, A Zubair, Z H Liu et al. GaN FinFETs and trigate devices for power and RF applications: Review and perspective. Semicond Sci Technol, 36, 054001(2021).

    [98] B Lu, E Matioli, T Palacios. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett, 33, 360(2012).

    [99] M Zhang, X H Ma, L Yang et al. Influence of fin configuration on the characteristics of AlGaN/GaN fin-HEMTs. IEEE Trans Electron Devices, 65, 1745(2018).

    [100] K Zhang, Y C Kong, G R Zhu et al. High-linearity AlGaN/GaN FinFETs for microwave power applications. IEEE Electron Device Lett, 38, 615(2017).

    [101] K Shinohara, C King, A D Carter et al. GaN-based field-effect transistors with laterally gated two-dimensional electron gas. IEEE Electron Device Lett, 39, 417(2018).

    [102] O Odabaşı, D Yılmaz, E Aras et al. AlGaN/GaN-based laterally gated high-electron-mobility transistors with optimized linearity. IEEE Trans Electron Devices, 68, 1016(2021).

    [103] J Chang, S Afroz, K Nagamatsu et al. The super-lattice castellated field-effect transistor: A high-power, high-performance RF amplifier. IEEE Electron Device Lett, 40, 1048(2019).

    [104] K Shinohara, C King, E J Regan et al. GaN-based multi-channel transistors with lateral gate for linear and efficient millimeter-wave power amplifiers, 1133(2019).

    [105] W C Xing, Z H Liu, H D Qiu et al. Planar-nanostrip-channel InAlN/GaN HEMTs on Si with improved gm and fT linearity. IEEE Electron Device Lett, 38, 619(2017).

    [106] D Jena, S Heikman, D Green et al. Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl Phys Lett, 81, 4395(2002).

    [107] Y L Fang, Z H Feng, J Y Yin et al. AlGaN/GaN polarization-doped field-effect transistors with graded heterostructure. IEEE Trans Electron Devices, 61, 4084(2014).

    [108] S Bajaj, Z C Yang, F Akyol et al. Graded AlGaN channel transistors for improved current and power gain linearity. IEEE Trans Electron Devices, 64, 3114(2017).

    [109] S H Sohel, A Xie, E Beam et al. X-band power and linearity performance of compositionally graded AlGaN channel transistors. IEEE Electron Device Lett, 39, 1884(2018).

    [110] Y L Fang, X B Song, Z H Feng et al. High linearity step-graded AlGaN/GaN heterojunction field effect transistor, 104(2016).

    [111] S H Sohel, A Xie, E Beam et al. Polarization engineering of AlGaN/GaN HEMT with graded InGaN sub-channel for high-linearity X-band applications. IEEE Electron Device Lett, 40, 522(2019).

    [112] J S Moon, J Wong, B Grabar et al. 360 GHz fMAX graded-channel AlGaN/GaN HEMTs for mmW low-noise applications. IEEE Electron Device Lett, 41, 1173(2020).

    [113] J S Moon, B Grabar, M Antcliffe et al. High-speed graded-channel GaN HEMTs with linearity and efficiency, 573(2020).

    [114] B Hou, L Yang, M H Mi et al. High linearity and high power performance with barrier layer of sandwich structure and Al0.05GaN back barrier for X-band application. J Phys D: Appl Phys, 53, 145102(2020).

    [115] J Liu, Y G Zhou, R M Chu et al. Al0.3Ga0.7N/Al0.05Ga0.95N/GaN composite-channel HEMTs with enhanced linearity. IEDM Technical Digest. IEEE International Electron Devices Meeting, San Francisco, CA, USA, 811(2004).

    [116] J E Liu, Y G Zhou, R M Chu et al. Highly linear Al0.3Ga0.7N-Al0.05Ga0.95N-GaN composite-channel HEMTs. IEEE Electron Device Lett, 26, 145(2005).

    [117] W J Song, Z Y Zheng, T Chen et al. RF linearity enhancement of GaN-on-Si HEMTs with a closely coupled double-channel structure. IEEE Electron Device Lett, 42, 1116(2021).

    [118] Q Yu, C Z Shi, L Yang et al. High current and linearity AlGaN/GaN/-graded-AlGaN: Si-doped/GaN heterostructure for low voltage power amplifier application. IEEE Electron Device Lett, 44, 582(2023).

    [119] T Palacios, A Chini, D Buttari et al. Use of double-channel heterostructures to improve the access resistance and linearity in GaN-based HEMTs. IEEE Trans Electron Devices, 53, 562(2006).

    [120] W Choi, R J Chen, C Levy et al. Intrinsically linear transistor for millimeter-wave low noise amplifiers. Nano Lett, 20, 2812(2020).

    [121] P F Wang, X H Ma, M H Mi et al. Influence of fin-like configuration parameters on the linearity of AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 68, 1563(2021).

    [122] S Wu, X H Ma, L Yang et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications. IEEE Electron Device Lett, 40, 846(2019).

    [123] T Gao, R M Xu, Y C Kong et al. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric. Appl Phys Lett, 106, 243501(2015).

    [124] Y C Zhang, T Zhang, H Zhou et al. InGaN-channel high-electron-mobility transistor with enhanced linearity and high-temperature performance. Appl Phys Express, 11, 094101(2018).

    [125] M H Wong, S Keller, N S Dasgupta et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond Sci Technol, 28, 074009(2013).

    [126] A Arias, P Rowell, J Bergman et al. High performance N-polar GaN HEMTs with OIP3/Pdc ~12dB at 10GHz, 1(2017).

    [127] M Guidry, B Romanczyk, H Li et al. Demonstration of 30 GHz OIP3/PDC > 10 dB by mm-wave N-polar deep recess MISHEMTs, 64(2019).

    [128] P Shrestha, M Guidry, B Romanczyk et al. High linearity and high gain performance of N-polar GaN MIS-HEMT at 30 GHz. IEEE Electron Device Lett, 41, 681(2020).

    [129] H C Wang, H F Su, Q H Luc et al. Improved linearity in AlGaN/GaN HEMTs for millimeter-wave applications by using dual-gate fabrication. ECS J Solid State Sci Technol, 6, S3106(2017).

    [130] D K Panda, T R Lenka. Linearity improvement in E-mode ferroelectric GaN MOS-HEMT using dual gate technology. Micro Nano Lett, 14, 618(2019).

    [131] N A Fichtenbaum, C Schaake, T E Mates et al. Electrical characterization of p-type N-polar and Ga-polar GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 91, 172105(2007).

    Chenglin Du, Ran Ye, Xiaolong Cai, Xiangyang Duan, Haijun Liu, Yu Zhang, Gang Qiu, Minhan Mi. A review on GaN HEMTs: nonlinear mechanisms and improvement methods[J]. Journal of Semiconductors, 2023, 44(12): 121801
    Download Citation