• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 1, 1630001 (2016)
Feifan Zhou1, Robert E. Nordquist2, and Wei R. Chen1、2、*
Author Affiliations
  • 1Biophotonics Research Laboratory Center for Interdisciplinary Biomedical Education Research College of Mathematics and Science University of Central Oklahoma Edmond Oklahoma 73034, USA
  • 2Immunophotonics Inc., St. Louis, Missouri 63108, USA
  • show less
    DOI: 10.1142/s1793545816300019 Cite this Article
    Feifan Zhou, Robert E. Nordquist, Wei R. Chen. Photonics immunotherapy — A novel strategy for cancer treatment[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1630001 Copy Citation Text show less
    References

    [1] R. L. Siegel, K. D. Miller, A. Jemal, "Cancer statistics, 2015," CA Cancer J. Clin. 65, 5–29 (2015).

    [2] J. Couzin-Frankel, "Cancer immunotherapy," Science 342, 1432–1433 (2013).

    [3] O. J. Finn, "Cancer immunology," N. Engl. J. Med. 358, 2704–2715 (2008).

    [4] J. N. Blattman, P. D. Greenberg, "Cancer immunotherapy: A treatment for the masses," Science 305, 200–205 (2004).

    [5] A. Carpi, A. Nicolini, A. Antonelli, P. Ferrari, G. Rossi, "Cytokines in the management of high risk or advanced breast cancer: An update and expectation," Curr. Cancer Drug Targets 9, 888– 903 (2009).

    [6] E. A. Eksioglu, S. Eisen, V. Reddy, "Dendritic cells as therapeutic agents against cancer," Front. Biosci. (Landmark Ed.) 15, 321–347 (2010).

    [7] J. Couzin-Frankel, "The dizzying journey to a new cancer arsenal," Science 340, 1514–1518 (2013).

    [8] I. Melero, G. Gaudernack, W. Gerritsen, C. Huber, G. Parmiani, S. Scholl, N. Thatcher, J. Wagstaff, C. Zielinski, I. Faulkner, H. Mellstedt, "Therapeutic vaccines for cancer: An overview of clinical trials," Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    [9] C. A. Klebanoff, N. Acquavella, Z. Yu, N. P. Restifo, "Therapeutic cancer vaccines: Are we there yet ," Immunol. Rev. 239, 27–44 (2011).

    [10] J. H. Tanne, "FDA approves prostate cancer "vaccine"," BMJ 340, c2431 (2010).

    [11] H. E. Kaiser, B. Bodey, B. Bodey Jr., S. E. Siegel, "Failure of cancer vaccines: The significant limitations of this approach to immunotherapy," Anticancer Res. 20, 2665–2676 (2000).

    [12] A. P. Castano, P. Mroz, M. R. Hamblin, "Photodynamic therapy and anti-tumour immunity," Nat. Rev. Cancer 6, 535–545 (2006).

    [13] G. Dranoff, M. Vanneman, "Combining immunotherapy and targeted therapies in cancer treatment," Nat. Rev. Cancer 12, 237–251 (2012).

    [14] W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, "Laser-photosensitizer assisted immunotherapy: A novel modality in cancer treatment," Cancer Lett. 115, 25–30 (1997).

    [15] M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, H. Kobayashi, "Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules," Nat. Med. 17, 1685–1691 (2011).

    [16] M. D. Daniell, J. S. Hill, "A history of photodynamic therapy," Aust. N Z J. Surg. 61, 340–348 (1991).

    [17] R. Ackroyd, C. Kelty, N. Brown, M. Reed, "The history of photodetection and photodynamic therapy," Photochem. Photobiol. 74, 656–669 (2001).

    [18] D. E Dolmans, D. Fukumura, R. K. Jain, "Photodynamic therapy for cancer," Nat. Rev. Cancer 3, 380–387 (2003).

    [19] S. Zhang, N. Jia, P. Shao, Q. Tong, X. Q. Xie, M. Bai, "Target-selective phototherapy using a ligandbased photosensitizer for type 2 cannabinoid receptor," Chem. Biol. 21, 338–344 (2014).

    [20] N. R. Finsen, Phototherapy, Edward Arnold: London (1901).

    [21] A. Grzybowski, K. Pietrzak, "From patient to discoverer–Niels Ryberg Finsen (1860–1904) — The founder of phototherapy in dermatology," Clin. Dermatol. 30, 451–455 (2012).

    [22] T. J. Dougherty, C. J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, "Photodynamic therapy," J. Natl. Cancer Inst. 90, 889–905 (1998).

    [23] S. Wu, F. Zhou, Y. Wei, W. R. Chen, Q. Chen, D. Xing, "Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst," Antioxid. Redox Signal. 20, 733–746 (2014).

    [24] W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, "Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser," Cancer Lett. 94, 125–131 (1995).

    [25] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, "Photodynamic therapy of cancer: An update," CA Cancer J. Clin. 61, 250–281 (2011).

    [26] J. S. Dysart, M. S. Patterson, "Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro," Phys. Med. Biol. 50, 2597–2616 (2005).

    [27] J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Rück, H. Schneckenburger, "Intracellular localization of photosensitizers," Ciba Found. Symp. 146, 95–107 (1989).

    [28] D. Kessel, Y. Luo, Y. Deng, C. K. Chang, "The role of subcellular localization in initiation of apoptosis by photodynamic therapy," Photochem. Photobiol. 65, 422–426 (1997).

    [29] Y.Y. Huang, S. K. Sharma, T. Dai, H. Chung, A. Yaroslavsky, M. Garcia-Diaz1, J. Chang, L. Y. Chiang, M. R. Hamblin, "Can nanotechnology potentiate photodynamic therapy ," Nanotechnol. Rev. 1, 111–146 (2012).

    [30] D. K. Chatterjee, L. S. Fong, Y. Zhang, "Nanoparticles in photodynamic therapy: An emerging paradigm," Adv. Drug Deliv. Rev. 60, 1627–1637 (2008).

    [31] A. S. Derycke, P. A. de Witte, "Liposomes for photodynamic therapy," Adv. Drug Deliv. Rev. 56, 17–30 (2004).

    [32] Z. Zhu, Z. Tang, J. A. Phillips, R. Yang, H. Wang, W. Tan, "Regulation of singlet oxygen generation using single-walled carbon nanotubes," J. Am. Chem. Soc. 130, 10856–10857 (2008).

    [33] Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, G. Nie, "Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy," ACS Nano. 8, 11529–11542 (2014).

    [34] J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, C. W. Spangler, "New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse," Clin. Cancer Res. 14, 6564–6573 (2008).

    [35] C. Wang, L. Cheng, Z. Liu, "Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics," Theranostics 3, 317–330 (2013).

    [36] J. M. Brunetaud, S. Mordon, V. Maunoury, C. Beacco, "Non-PDT Uses of lasers in oncology," Lasers Med Sci. 10, 3–8 (1995).

    [37] C. Liang, S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai, Z. Liu, "Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes," Adv. Mater. 26, 5646–5652 (2014).

    [38] X. Huang, M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT)," Alexandria J. Med. 47, 1–9 (2011).

    [39] M. R. Hamblin, Y.-Y. Huang, Handbook of Photomedicine, CRC Press, LLC (2013).

    [40] F. Zhou, D. Xing, Z. Ou, B. Wu, D. E. Resasco, W. R. Chen, "Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes," J. Biomed. Opt. 14, 021009 (2009).

    [41] W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, "Chromophoreenhanced laser-tumor tissue photothermal interaction using 808 nm diode laser," Cancer Lett. 88, 15–19 (1995).

    [42] W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, "Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: An in vivo efficacy study," Cancer Lett. 98, 169–173 (1996).

    [43] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

    [44] F. Zhou, S. Wu, B. Wu, W. R. Chen, D. Xing, "Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy," Small 7, 2727–2735 (2011).

    [45] X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115–2120 (2006).

    [46] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, "Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy," Nano Lett. 10, 3318–3323 (2010).

    [47] L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, Z. Liu, "Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy," Angew. Chem. Int. Ed. Engl. 50, 7385– 7390 (2011).

    [48] A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko, P. Agostinis, "Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation," Biochim. Biophys. Acta. 1805, 53–71 (2010).

    [49] M. H. den Brok, R. P. Sutmuller, R. van der Voort, E. J. Bennink, C. G. Figdor, T. J. Ruers, G. J. Adema, "In situ tumor ablation creates an antigen source for the generation of antitumor immunity," Cancer Res. 64, 4024–4029 (2004).

    [50] M. Korbelik, "PDT-associated host response and its role in the therapy outcome," Lasers Surg. Med. 38, 500–508 (2006).

    [51] A. D. Garg, D. Nowis, J. Golab, P. Agostinis, "Photodynamic therapy: Illuminating the road from cell death towards anti-tumour immunity," Apoptosis 15, 1050–1071 (2010).

    [52] P. Mroz, J. T. Hashmi, Y. Y. Huang, N. Lange, M. R. Hamblin, "Stimulation of anti-tumor immunity by photodynamic therapy," Expert Rev. Clin. Immunol. 7, 75–91 (2011).

    [53] H. G. Zhang, K. Mehta, P. Cohen, C. Guha, "Hyperthermia on immune regulation: A temperature's story," Cancer Lett. 271, 191–204 (2008).

    [54] A. K. Verrico, A. K. Haylett, J. V. Moore, "In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia or photodynamic therapy," Lasers Med. Sci. 16, 192–198 (2001).

    [55] J. G. Hanlon, K. Adams, A. J. Rainbow, R. S. Gupta, G. Singh, "Induction of Hsp60 by Photofrin- mediated photodynamic therapy," J. Photochem. Photobiol. B 64, 55–61 (2001).

    [56] T. Verwanger, R. Sanovic, F. Aberger, A. M. Frischauf, B. Krammer, "Gene expression pattern following photodynamic treatment of the carcinoma cell line A-431 analysed by cDNA arrays," Int. J. Oncol. 21, 1353–1359 (2002).

    [57] C. J. Gomer, A. Ferrario, N. Rucker, S. Wong, A. S. Lee, "Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization," Cancer Res. 51, 6574–6579 (1991).

    [58] D. Nowis, M. Legat, T. Grzela, J. Niderla, E. Wilczek, G. M. Wilczynski, E. G odkowska, P. Mrówka, T. Issat, J. Dulak, A. Józkowicz, H. Wa , M. Adamek, A. Wrzosek, S. Nazarewski, M. Makowski, T. Stok osa, M. Jakóbisiak, J. Go ab, "Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity," Oncogene 25, 3365–3374 (2006).

    [59] A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798–7806 (2007).

    [60] M. N. Rylander, Y. Feng, J. Bass, K. R. Diller, "Heat shock protein expression and injury optimization for laser therapy design," Lasers Surg. Med. 39, 731–746 (2007).

    [61] Z. Prohaszka, "Chaperones as part of immune networks," Adv. Exp. Med. Biol. 594, 159–166 (2007).

    [62] P. Srivastava, "Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses," Annu. Rev. Immunol. 20, 395–425 (2002).

    [63] T. Chen, J. Guo, C. Han, M. Yang, X. Cao, "Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway," J. Immunol. 182, 1449–1459 (2009).

    [64] J. Gong, Y. Zhang, J. Durfee, D. Weng, C. Liu, S. Koido, B. Song, V. Apostolopoulos, S. K. Calderwood, "A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use," J. Immunol. 184, 488–496 (2010).

    [65] M. Nishikawa, S. Takemoto, Y. Takakura, "Heat shock protein derivatives for delivery of antigens to antigen presenting cells," Int. J. Pharm. 354, 23– 27 (2008).

    [66] T. Torigoe, Y. Tamura, N. Sato, "Heat shock proteins and immunity: Application of hyperthermia for immunomodulation," Int. J. Hyperthermia. 25, 610–616 (2009).

    [67] M. Korbelik, J. Sun, I. Cecic, "Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response," Cancer Res. 65, 1018–1026 (2005).

    [68] F. Zhou, D. Xing, W. R. Chen, "Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment," Cancer Lett. 264, 135–144 (2008).

    [69] F. Zhou, D. Xing, W. R. Chen, "Regulation of HSP70 on activating macrophages using PDT induced apoptotic cells," Int. J. Cancer 125, 1380– 1389 (2009).

    [70] S. Song, F. Zhou, D. Xing, W. R. Chen, "PDTinduced HSP70 externalization up-regulates NO production via TLR2 signal pathway in macrophages," FEBS Lett. 587, 128–135 (2013).

    [71] R. F. Sanchez-Ortiz, N. Tannir, K. Ahrar, C. G. Wood, "Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: An in situ tumor vaccine ," J. Urol. 170, 178–179 (2003).

    [72] A. Murshid, J. Gong, S. K. Calderwood, "The role of heat shock proteins in antigen cross presentation," Front. Immunol. 3, 63 (2012).

    [73] W. R. Chen, H. Liu, J. W. Ritchey, K. E. Bartels, M. D. Lucroy, R. E. Nordquist, "Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats," Cancer Res. 62, 4295–4299 (2002).

    [74] B. A. Goff, M. Bamberg, T. Hasan, "Photoimmunotherapy of human ovarian carcinoma cells ex vivo," Cancer Res. 51, 4762–4767 (1991).

    [75] D. Mew, C. K. Wat, G. H. Towers, J. G. Levy, "Photoimmunotherapy: Treatment of animal tumors with tumor-specific monoclonal antibodyhematoporphyrin conjugates," J. Immunol. 130, 1473–1477 (1983).

    [76] B. A. Goff, U. Hermanto, J. Rumbaugh, J. Blake, M. Bamberg, T. Hasan, "Photoimmunotherapy and biodistribution with an OC125-chlorin immunoconjugate in an in vivo murine ovarian cancer model," Br. J. Cancer 70, 474–480 (1994).

    [77] B. A. Goff, J. Blake, M. P. Bamberg, T. Hasan, "Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model," Br. J. Cancer 74, 1194–1198 (1996).

    [78] M. R. Hamblin, J. L. Miller, T. Hasan, "Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells," Cancer Res. 56, 5205–5210 (1996).

    [79] R. C. Bast Jr., M. Feeney, H. Lazarus, L. M. Nadler, R. B. Colvin, R. C. Knapp, "Reactivity of a monoclonal antibody with human ovarian carcinoma," J. Clin. Invest. 68, 1331–1337 (1981).

    [80] R. C. Bast Jr., T. L. Klug, E. St John, E. Jenison, J. M. Niloff, H. Lazarus, R. S. Berkowitz, T. Leavitt, C. T. Griffiths, L. Parker, V. R. Zurawski Jr., R. C. Knapp, "A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer," N. Engl. J. Med. 309, 883–887 (1983).

    [81] M. N. Hosono, K. Endo, H. Sakahara, Y. Watanabe, T. Saga, T. Nakai, M. Hosono, T. Nakajima, Y. Onoyama, J. Konishi, "Different antigenic nature in apparently healthy women with high serum CA 125 levels compared with typical patients with ovarian cancer," Cancer 70, 2851–2856 (1992).

    [82] M. Del Governatore, M. R. Hamblin, C. R. Shea, I. Rizvi, K. G. Molpus, K. K Tanabe, T. Hasan, "Experimental photoimmunotherapy of hepatic metastases of colorectal cancer with a 17.1A chlorin(e6) immunoconjugate," Cancer Res. 60, 4200–4205 (2000).

    [83] C. Eng, "The evolving role of monoclonal antibodies in colorectal cancer: Early presumptions and impact on clinical trial development," Oncologist 15, 73–84 (2010).

    [84] E. Norguet, L. Dahan, J. F. Seitz, "Targetting esophageal and gastric cancers with monoclonal antibodies," Curr. Top. Med. Chem. 12, 1678– 1682 (2012).

    [85] L. Vecchione, B. Jacobs, N. Normanno, F. Ciardiello, S. Tejpar, "EGFR-targeted therapy," Exp. Cell Res. 317, 2765–2771 (2011).

    [86] T. E. Stinchcombe, M. A. Socinski, "Targeted therapies: Biomarkers in NSCLC for selecting cetuximab therapy," Nat. Rev. Clin. Oncol. 7, 426–428 (2010).

    [87] N. Tebbutt, M. W. Pedersen, T. G. Johns, "Targeting the ERBB family in cancer: Couples therapy," Nat. Rev. Cancer 13, 663–673 (2013).

    [88] T. A. Waldmann, "Immunotherapy: Past, present and future," Nat. Med. 9, 269–277 (2003).

    [89] J. M. Reichert, C. J. Rosensweig, L. B. Faden, M. C. Dewitz, "Monoclonal antibody successes in the clinic," Nat. Biotechnol. 23, 1073–1088 (2005).

    [90] K. Sato, R. Watanabe, H. Hanaoka, T. Harada, T. Nakajima, I. Kim, C. H. Paik, P. L. Choyke, H. Kobayashi, "Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor," Mol. Oncol. 8, 620–632 (2014).

    [91] M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, H. Kobayashi, "Near-infrared theranostic photoimmunotherapy (PIT): Repeated exposure of light enhances the effect of immunoconjugate," Bioconjug. Chem. 23, 604–609 (2012).

    [92] M. Mitsunaga, T. Nakajima, K. Sano, G. Kramer- Marek, P. L. Choyke, H. Kobayashi, "Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy," BMC Cancer 12, 345 (2012).

    [93] T. Nakajima, K. Sano, M. Mitsunaga, P. L. Choyke, H. Kobayashi, "Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging," Cancer Res. 72, 4622– 4628 (2012).

    [94] T. Nakajima, K. Sano, P. L. Choyke, H. Kobayashi, "Improving the efficacy of photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model," Theranostics 3, 357–365 (2013).

    [95] K. Sato, T. Nagaya, P. L. Choyke, H. Kobayashi, "Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience," Theranostics 5, 698–709 (2015).

    [96] F. Zhou, X. Li, M. F. Naylor, T. Hode, R. E. Nordquist, L. Alleruzzo, J. Raker, S. S. Lam, N. Du, L. Shi, X. Wang, W. R. Chen, "InCVAX–a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity," Cancer Lett. 359, 169–177 (2015).

    [97] W. R. Chen, R. Carubelli, H. Liu, R. E. Nordquist, "Laser immunotherapy," Mol. Biotechnol. 25, 37– 43 (2003).

    [98] F. Zhou, S. Song, W. R. Chen, D. Xing, "Immunostimulatory properties of glycated chitosan," J. X-Ray Sci. Tech. 19, 285–292 (2011).

    [99] X. Li, M. Min, N. Du, Y. Gu, T. Hode, M. Naylor, D. Chen, R. E. Nordquist, W. R. Chen, "Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine," Clin. Dev. Immunol. 2013, 387023 (2013).

    [100] S. Song, F. Zhou, R. E. Nordquist, R. Carubelli, H. Lui W. R. Chen, "Glycated chitosan as a new non-toxic immunological stimulant," Immunopharmacol. Immunotoxicol. 31, 202–208 (2009).

    [101] W. R. Chen, A. K. Singhal, H. Liu, R. E. Nordquist, "Laser immunotherapy induced antitumor immunity and its adoptive transfer," Cancer Res. 61, 459–461 (2001).

    [102] W. R. Chen, S. W. Jeong, M. D. Lucroy, R. F. Wolf, E. W. Howard, H. Liu, R. E. Nordquist, "Induced antitumor immunity against DMBA-4 metastatic mammary tumors in rats using laser immunotherapy," Inter. J. Cancer 107, 1053–1057 (2003).

    [103] W. R. Chen, Z. Huang, M. Korbelik, R. E. Nordquist, H. Liu, "Photoimmunotherapy for cancer treatment," J. Environ. Pathol. Toxicol. Oncol. 25, 281–291 (2006).

    [104] W. R. Chen, M. Korbelik, K. E. Bartels, H. Liu, J. Sun, R. E. Nordquist, "Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant," Photochem. Photobiol. 81, 190–195 (2005).

    [105] F. Zhou, X. Li, S. Song, J. T. Acquaviva III, R. F. Wolf, E. W. Howard, W. R. Chen, "Anti-tumor responses induced by laser irradiation and immunological stimulation using a mouse mammary tumor model," J. Innov. Opt. Heal. Sci. 6, 1350039 (2013).

    [106] W. R. Chen, W. Zhu, J. R. Dynlacht, H. Liu, R. E. Nordquist, "Long-term tumor resistance induced by laser photo-immunotherapy," Inter. J. Cancer 81, 808–812 (1999).

    [107] M. F. Naylor, W. R. Chen, T. K. Teague, L. Perry, R. E. Nordquist, "In situ photo immunotherapy: A tumor-directed treatment modality for melanoma," Br. J. Dermatol. 155, 1287–1292 (2006).

    [108] X. Li, G. L. Ferrel, M. C. Guerra, T. Hode, J. A. Lunn, O. Adalsteinsson, R. E. Nordquist, H. Liu, W. R. Chen, "Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients," Photochem. Photobiol. Sci. 10, 817–821 (2011).

    [109] X. Li, M. F. Naylor, H. Le, R. E. Norquist, T. K. Teague, C. A. Howard, C. Murray, W. R. Chen, "Clinical effects of in situ photoimmunotherapy on late-stage melanoma patients: A preliminary study," Cancer Biol. Ther. 10, 1081–1087 (2010).

    [110] X. Li, T. Hode, M. C. Guerra, J. A. Lunn, O. Adalsteinsson, R. E. Norquist, W. R. Chen, "photothermal therapy and immunoadjuvant against Stage IV breast cancer," Innov. Opt. Health Sci. 3, 279 (2010).

    [111] M. Korbelik, J. Sun, I. Cecic, K. Serrano, "Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors," Photochem. Photobiol. Sci. 3, 812–816 (2004).

    [112] U. Winters, S. Daayana, J. T. Lear, A. E. Tomlinson, E. Elkord, P. L. Stern, H. C. Kitchener, "Clinical and immunologic results of a phase II trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia," Clin. Cancer Res. 14, 5292–5299 (2008).

    [113] K. Le, X. Li, D. Figueroa, R. A. Towner, P. Garteiser, D. Saunders, N. Smith, H. Liu, T. Hode, R. E.Norquist, W. R. Chen, "Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method," J. Biomed. Opt. 16, 128001 (2011).

    [114] F. Zhou, S. Wu, S. Song, W. R. Chen, D. E. Resasco, D. Xing, "Antitumor immunologically modified carbon nanotubes for photothermal therapy," Biomaterials 33, 3235–3242 (2012).

    [115] L. Guo, D. D. Yan, D. Yang, Y. Li, X. Wang, O. Zalewski, B. Yan, W. Lu, "Combinatorial photothermal and immuno cancer therapy using chitosan- coated hollow copper sulfide nanoparticles," ACS Nano 8, 5670–5681 (2014).

    [116] T. G. St Denis, K. Aziz, A. A. Waheed, Y. Y. Huang, S. K. Sharma, P. Mroz, M. R. Hamblin, "Combination approaches to potentiate immune response after photodynamic therapy for cancer," Photochem. Photobiol. Sci. 10, 792–801 (2011).

    [117] M. Uehara, K. Sano, Z. L. Wang, J. Sekine, H. Ikeda, T. Inokuchi, "Enhancement of the photodynamic antitumor effect by streptococcal preparation OK-432 in the mouse carcinoma," Cancer Immunol. Immunother. 49, 401–409 (2000).

    [118] R. C. Myers, B. H. Lau, D. Y. Kunihira, R. R. Torrey, J. L. Woolley, J. Tosk, "Modulation of hematoporphyrin derivative-sensitized phototherapy with corynebacterium parvum in murine transitional cell carcinoma," Urology 33, 230–235 (1989).

    [119] M. Korbelik, I. Cecic, "Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment," J. Photochem. Photobiol. B. 44, 151–158 (1998).

    [120] M. Korbelik, J. Sun, J. J. Posakony, "Interaction between photodynamic therapy and BCG immunotherapy responsible for the reduced recurrence of treated mouse tumors," Photochem. Photobiol. 73, 403–409 (2001).

    [121] J. Go ab, G. Wilczyński, R. Zagozdzon, T. Stok osa, A. Dabrowska, J. Rybczyńska, M. Wasik, E. Machaj, T. O da, K. Kozar, R. Kamiński, A. Giermasz, A. Czajka, W. Lasek, W. Feleszko, M. Jakóbisiak, "Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF," Br. J. Cancer 82, 1485–1491 (2000).

    [122] G. Krosl, M. Korbelik, J. Krosl, G. J. Dougherty, "Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor," Cancer Res. 56, 3281–3286 (1996).

    [123] D. A. Bellnier, "Potentiation of photodynamic therapy in mice with recombinant human tumor necrosis factor-alpha," J. Photochem. Photobiol B 8, 203–210 (1991).

    [124] E. E. Johnson, B. H. Yamane, I. N. Buhtoiarov, H. D. Lum, A. L. Rakhmilevich, D. M. Mahvi, S. D. Gillies, P. M. Sondel, "Radiofrequency ablation combined with KS-IL2 immunocytokine (EMD 273066) results in an enhanced antitumor effect against murine colon adenocarcinoma," Clin. Cancer Res. 15, 4875–4884 (2009).

    [125] M. Habibi, M. Kmieciak, L. Graham, J. K. Morales, H. D. Bear, M. H. Manjili, "Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis," Breast Cancer Res. Treat. 114, 423–431 (2009).

    Feifan Zhou, Robert E. Nordquist, Wei R. Chen. Photonics immunotherapy — A novel strategy for cancer treatment[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1630001
    Download Citation