• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 053003 (2018)
Haibin Cui*, Fei Wang, and Meiyi Li
Author Affiliations
  • College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP55.053003 Cite this Article Set citation alerts
    Haibin Cui, Fei Wang, Meiyi Li. Measurements of CO2 Temperature and Concentration in High Temperature Environment Based on Tunable Diode Laser Absorption Spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053003 Copy Citation Text show less
    References

    [1] Doney S C, Fabry V J, Feely R A. et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 1, 169-192(2009). http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-384

    [3] Hughes T P, Baird A H, Bellwood D R. et al. Climate change, human impacts, and the resilience of coral reefs[J]. Science, 301, 929-933(2003). http://europepmc.org/abstract/MED/12920289

    [4] Spearrin R M, Goldenstein C S, Jeffries J B. et al. Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments[J]. Measurement Science and Technology, 24, 055107(2013). http://www.ingentaconnect.com/content/iop/mst/2013/00000024/00000005/art055107

    [5] Larcher G, Landsheere X, Schwell M. et al. Spectral shape parameters of pure CO2, transitions near 1.6 μm by tunable diode laser spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 164, 82-88(2015). http://www.sciencedirect.com/science/article/pii/S0022407315001983

    [6] Li N, Yan J H, Wang F et al. Temperature measurement of CO2 gas VCSEL diode laser at 1.58 μm[J]. Journal of Combustion Science & Technology, 14, 458-462(2008).

    [7] Webber M E, Kim S, Sanders S T. et al. In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm[J]. Applied Optics, 40, 821-828(2001). http://europepmc.org/abstract/MED/18357062

    [8] Farooq A, Jeffries J B, Hanson R K. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm[J]. Applied Physics B, 96, 161-173(2009). http://link.springer.com/article/10.1007/s00340-009-3446-7

    [9] Farooq A, Jeffries J B, Hanson R K. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm[J]. Applied Physics B, 90, 619-628(2008).

    [10] Wu K, Li F, Cheng X. et al. Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm[J]. Applied Physics B, 117, 659-666(2014).

    [11] Gordon I E, Rothman L S, Hill C. et al. The HITRAN 2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 203, 3-69(2017).

    [12] Shang Y, Wei Y B, Wang C et al. Two gas concentration on-line monitoring based on absorption spectra[J]. Chinese Journal of Lasers, 37, 248-251(2010).

    [13] Yuan S, Kan R F, He Y B et al. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese Journal of Lasers, 41, 1208003(2014).

    Haibin Cui, Fei Wang, Meiyi Li. Measurements of CO2 Temperature and Concentration in High Temperature Environment Based on Tunable Diode Laser Absorption Spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053003
    Download Citation