• Photonics Research
  • Vol. 10, Issue 7, 1723 (2022)
Moshe Katzman1、2, Maayan Priel1、2, Inbar Shafir1、2、3, Saawan Kumar Bag1、2, Dvir Munk1、2, Naor Inbar4, Moshe Feldberg2, Tali Sharabani2, Leroy Dokhanian1、2, Matan Slook1、2, and Avi Zadok1、2、*
Author Affiliations
  • 1Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
  • 2Institute for Nano-Technology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
  • 3Soreq NRC, Yavne 81800, Israel
  • 4Tower Semiconductors, Migal Ha’Emek 2310502, Israel
  • show less
    DOI: 10.1364/PRJ.457340 Cite this Article Set citation alerts
    Moshe Katzman, Maayan Priel, Inbar Shafir, Saawan Kumar Bag, Dvir Munk, Naor Inbar, Moshe Feldberg, Tali Sharabani, Leroy Dokhanian, Matan Slook, Avi Zadok. Surface acoustic wave photonic filters with a single narrow radio-frequency passband in standard silicon on insulator[J]. Photonics Research, 2022, 10(7): 1723 Copy Citation Text show less
    References

    [1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [2] A. Seeds. Microwave photonics. IEEE Trans. Microw. Theory Tech., 50, 877-887(2002).

    [3] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [4] R. Waterhouse, D. Novack. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag., 16, 84-92(2015).

    [5] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany. Integrated microwave photonics. Laser Photon. Rev., 7, 506-538(2013).

    [6] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [7] L. Pavesi, D. J. Lockwood. Silicon photonics III. Topics in Applied Physics, 119, 1-50(2016).

    [8] K. Giewont, K. Nummy, F. A. Anderson, J. Ayala, T. Barwicz, Y. Bian, K. K. Dezfulian, D. M. Gill, T. Houghton, S. Hu, B. Peng, M. Rakowski, S. Rauch, J. C. Rosenberg, A. Sahin, I. Sobert, A. Stricker. 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron., 25, 8200611(2019).

    [9] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 24, 201-229(2006).

    [10] R. Minasian, E. H. W. Chan, X. Yi. Microwave photonic signal processing. Opt. Express, 21, 22918-22936(2013).

    [11] J. Capmany, B. Ortega, D. Pastor, S. Sales. Discrete-time optical processing of microwave signals. J. Lightwave Technol., 23, 702-723(2005).

    [12] K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw. Optical fiber delay-line signal processing. IEEE Trans. Microw. Theory Tech., 33, 193-210(1985).

    [13] N. Ehteshami, W. Zhang, J. Yao. Optically tunable single passband microwave photonic filter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator. International Topical Meeting on Microwave Photonics (MWP), 1-4(2015).

    [14] S. Song, S. X. Chew, X. Yi, L. Nguyen, R. A. Minasian. Tunable single-passband microwave photonic filter based on integrated optical double notch filter. J. Lightwave Technol., 36, 4557-4564(2018).

    [15] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

    [16] R. Maram, S. Kaushal, J. Azaña, L. R. Chen. Recent trends and advances of silicon-based integrated microwave photonics. Photonics, 6, 13(2019).

    [17] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [18] A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, B. J. Eggleton. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett., 41, 436-439(2016).

    [19] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. Tunable microwave-photonic filtering with high out-of-band rejection in silicon. APL Photon., 5, 096103(2020).

    [20] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. Kharel, P. T. Rakich. Microwave filtering using forward Brillouin scattering in photonic-phononic emit-receive devices. J. Lightwave Technol., 38, 5248-5261(2020).

    [21] Z. Yu, X. Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl., 9, 1(2020).

    [22] D. Munk, M. Katzman, M. Hen, M. Priel, M. Feldberg, T. Sharabani, S. Levy, A. Bergman, A. Zadok. Surface acoustic wave photonic devices in silicon on insulator. Nat. Commun., 10, 4214(2019).

    [23] M. Katzman, D. Munk, M. Priel, E. Grunwald, M. Hen, N. Inbar, M. Feldberg, T. Sharabani, R. Zektzer, G. Bashan, M. Vofsi, U. Levy, A. Zadok. Surface acoustic microwave photonic filters in standard silicon-on-insulator. Optica, 8, 697-707(2021).

    [24] M. Hen, L. Dokhanian, E. Grunwald, M. Slook, M. Katzman, M. Priel, O. Girshevitz, A. Zadok. Analysis of thin layers using surface acoustic wave-photonic devices in silicon-on-insulator. Opt. Express, 30, 6949-6959(2022).

    [25] C. Giannetti, B. Revaz, F. Banfi, M. Montagnese, G. Ferrini, F. Cilento, S. Maccalli, P. Vavassori, G. Oliviero, E. Bontempi, L. E. Depero, V. Metlushko, F. Parmigiani. Thermomechanical behavior of surface acoustic waves in ordered arrays of nanodisks studied by near-infrared pump-probe diffraction experiments. Phys. Rev. B, 76, 125413(2007).

    [26] D. Nardi, M. Travagliati, M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, G. Ferrini, F. Parimgiani, F. Banfi. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals. Nano Lett., 11, 4126-4133(2011).

    [27] M. Schubert, M. Grossman, O. Ristow, M. Hettich, A. Bruchhausen, E. S. C. Barretto, E. Scheer, V. Gusev, T. Dekorsy. Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy. Appl. Phys. Lett., 101, 013108(2012).

    [28] T. Erdogan. Fiber grating spectra. J. Lightwave Technol., 15, 1277-1294(1997).

    [29] C. K. Madsen, J. H. Zhao. Optical Filter Design and Analysis(1999).

    [30] A. Naiman, B. Desiatov, L. Stern, N. Mazurski, J. Shappir, U. Levy. Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform. Opt. Lett., 40, 1892-1895(2015).

    [31] M. M. de Lima, W. Seidel, H. Kostial, P. V. Santos. Embedded interdigital transducers of high-frequency surface acoustic waves on GaAs. J. Appl. Phys., 96, 3494-3500(2004).

    [32] Y. Liu, A. Choudhary, D. Marpaung, B. J. Eggleton. Integrated microwave photonic filters. Adv. Opt. Photon., 12, 485-555(2020).

    [33] L. Zhang, L. Jie, M. Zhang, Y. Wang, Y. Xie, Y. Shi, D. Dai. Ultrahigh-Q silicon racetrack resonators. Photon. Res., 8, 684-689(2020).

    [34] R. Li, L. Zhou, J. Xie, A. Xie, J. Chen. Optimization of adiabatic microring resonators with few-mode and high-Q resonances. Appl. Opt., 54, 10207-10212(2015).

    [35] M. M. de Lima, F. Alsina, W. Seidel, P. V. Santos. Focusing of surface acoustic-wave fields on (100) GaAs surfaces. J. Appl. Phys., 94, 7848-7855(2003).

    [36] M. M. de Lima, M. Beck, Y. Hey, P. V. Santos. Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett., 89, 121104(2006).

    [37] H. Li, S. A. Tadesse, Q. Liu, M. Li. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [38] D. B. Sohn, S. Kim, G. Bahl. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics, 12, 91-97(2018).

    [39] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Lončar. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    Moshe Katzman, Maayan Priel, Inbar Shafir, Saawan Kumar Bag, Dvir Munk, Naor Inbar, Moshe Feldberg, Tali Sharabani, Leroy Dokhanian, Matan Slook, Avi Zadok. Surface acoustic wave photonic filters with a single narrow radio-frequency passband in standard silicon on insulator[J]. Photonics Research, 2022, 10(7): 1723
    Download Citation