• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1206001 (2021)
Jian Wang*, Xiaoping Cao, and Xinliang Zhang**
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/CJL202148.1206001 Cite this Article Set citation alerts
    Jian Wang, Xiaoping Cao, Xinliang Zhang. On-Chip Integrated Multi-Dimensional Optical Interconnects and Optical Processing[J]. Chinese Journal of Lasers, 2021, 48(12): 1206001 Copy Citation Text show less
    References

    [1] Meindl J D. Beyond Moore’s law: the interconnect era[J]. Computing in Science & Engineering, 5, 20-24(2003). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1166548

    [2] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).

    [3] Track E, Forbes N, Strawn G. The end of Moore’s law[J]. Computing in Science & Engineering, 19, 4-6(2017).

    [4] Magen N, Kolodny A, Weiser U et al. Interconnect-power dissipation in a microprocessor[C]. //Proceedings of the 2004 International Workshop on System Level Interconnect Prediction, February 14-15, 2004, Paris, France., 7-13(2004).

    [5] Huang D W, Sze T, Landin A et al. Optical interconnects: out of the box forever?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 614-623(2003). http://ieeexplore.ieee.org/document/1239028/

    [6] Caulfield H J, Dolev S. Why future supercomputing requires optics[J]. Nature Photonics, 4, 261-263(2010). http://www.nature.com/articles/nphoton.2010.94

    [7] DeCusatis C. Optical interconnect networks for data communications[J]. Journal of Lightwave Technology, 32, 544-552(2014).

    [8] Liang D, Bowers J E. Photonic integration: Si or InP substrates?[J]. Electronics Letters, 45, 578-581(2009). http://ieeexplore.ieee.org/document/5069750

    [9] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [10] Gunn C. CMOS photonics for high-speed interconnects[J]. IEEE Micro, 26, 58-66(2006). http://ieeexplore.ieee.org/document/1624327/

    [11] Vlasov Y A. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100 G[J]. IEEE Communications Magazine, 50, s67-s72(2012). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6146487

    [12] Roelkens G, van Campenhout J, Brouckaert J et al. III-V/Si photonics by die-to-wafer bonding[J]. Materials Today, 10, 36-43(2007). http://www.sciencedirect.com/science/article/pii/S1369702107701785

    [13] Liang D, Roelkens G, Baets R et al. Hybrid integrated platforms for silicon photonics[J]. Materials, 3, 1782-1802(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC5445873/

    [14] Brackett C A. Dense wavelength division multiplexing networks: principles and applications[J]. IEEE Journal on Selected areas in Communications, 8, 948-964(1990). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/49.57798&rfr_id=trans/tc/1993/09/ttc1993091105.htm

    [15] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 8, 345-348(2014). http://www.nature.com/articles/nphoton.2014.58

    [16] Winzer P J. Modulation and multiplexing in optical communications[C]. //2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, June 2-4, 2009, Baltimore, MD, USA., 1-2(2009).

    [17] Weber H G, Ludwig R, Ferber S et al. Ultrahigh-speed OTDM-transmission technology[J]. Journal of Lightwave Technology, 24, 4616-4627(2006). http://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-24-12-4616

    [18] Jansen S L, Morita I, Schenk T C et al. Long-haul transmission of 16×52.5 Gbits/s polarization-division- multiplexed OFDM enabled by MIMO processing[J]. Journal of Optical Networking, 7, 173-182(2008). http://www.opticsinfobase.org/jocn/abstract.cfm?id=149882

    [19] Zhou X, Yu J J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 27, 3641-3653(2009). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-27-16-3641

    [20] Winzer P J. High-spectral-efficiency optical modulation formats[J]. Journal of Lightwave Technology, 30, 3824-3835(2012).

    [21] Gui C C, Wang J. Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring[J]. Photonics Research, 4, 168-172(2016).

    [22] Gui C C, Li C, Yang Q et al. Demonstration of terabit-scale data transmission in silicon vertical slot waveguides[J]. Optics Express, 23, 9736-9745(2015). http://www.ncbi.nlm.nih.gov/pubmed/25969012

    [23] Du J, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission[J]. Optics Express, 25, 30124-30134(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-24-30124

    [24] Gao G, Luo M, Li X et al. Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides[J]. Optics Express, 25, 2918-2927(2017). http://www.ncbi.nlm.nih.gov/pubmed/29519008

    [25] Horst F, Green W M J, Assefa S et al. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing[J]. Optics Express, 21, 11652-11658(2013).

    [26] Dong P. Silicon photonic integrated circuits for wavelength-division multiplexing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 370-378(2016). http://ieeexplore.ieee.org/document/7486124

    [27] Chen S T, Fu X, Wang J et al. Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 33, 2279-2285(2015).

    [28] Dai D, Fu X, Shi Y et al. Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors[J]. Optics Letters, 35, 2594-2596(2010). http://www.ncbi.nlm.nih.gov/pubmed/20680069An

    [29] Ding Y H, Xu J, da Ros F et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 21, 10376-10382(2013).

    [30] Xu L H, Wang Y, Mao D et al. Ultra-broadband and compact two-mode multiplexer based on subwavelength-grating-slot-assisted adiabatic coupler for the silicon-on-insulator platform[J]. Journal of Lightwave Technology, 37, 5790-5800(2019). http://ieeexplore.ieee.org/document/8823000

    [31] He Y, Zhang Y, Zhu Q M et al. Silicon high-order mode (de)multiplexer on single polarization[J]. Journal of Lightwave Technology, 36, 5746-5753(2018). http://ieeexplore.ieee.org/document/8514018/

    [32] Dai D X, Li C L, Wang S P et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 12, 1700109(2018).

    [33] Chen S T, Wu H, Dai D X. High extinction-ratio compact polarization beam splitter on silicon[J]. Electronics Letters, 52, 1043-1045(2016). http://ieeexplore.ieee.org/document/7481004/

    [34] Kim Y, Lee M H, Kim Y et al. High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide[J]. Optics Letters, 43, 3241-3244(2018).

    [35] Tian Y, Qiu J F, Liu C et al. Compact polarization beam splitter with a high extinction ratio over S + C + L band[J]. Optics Express, 27, 999-1009(2019).

    [36] Chen K, Yu K, He S. High performance polarization beam splitter based on cascaded directional couplers assisted by effectively anisotropic structures[J]. IEEE Photonics Journal, 11, 1-9(2019). http://ieeexplore.ieee.org/document/8884725/

    [37] Chen H S, van Uden R, Okonkwo C et al. Compact spatial multiplexers for mode division multiplexing[J]. Optics Express, 22, 31582-31594(2014). http://europepmc.org/abstract/med/25607130

    [38] Dai D X, Wang J, Chen S T et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing[J]. Laser & Photonics Reviews, 9, 339-344(2015).

    [39] Tan Y, Wu H, Wang S P et al. Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing[J]. Optics Letters, 43, 1962-1965(2018). http://europepmc.org/abstract/MED/29714772

    [40] Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 38, 1422-1424(2013).

    [41] Chen S T, Shi Y C, He S L et al. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems[J]. Optics Express, 23, 12840-12849(2015). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-23-10-12840

    [42] Wildermuth E, Nadler C, Lanker M et al. Penalty-free polarisation compensation of SiO2/Si arrayed waveguide grating wavelength multiplexers using stress release grooves[J]. Electronics Letters, 34, 1661-1663(1998). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=715278

    [43] Sun J, Wu Y D, Wu W F et al. Optimization of polarization-dependent loss of arrayed waveguide grating demultiplexer[J]. Chinese Journal of Lasers, 47, 0106003(2020).

    [44] Luo L W, Ophir N, Chen C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 5, 3069(2014).

    [45] Cao X P, Zheng S, Zhou N et al. On-chip multi-dimensional 1 × 4 selective switch with simultaneous mode-/polarization-/wavelength-division multiplexing[J]. IEEE Journal of Quantum Electronics, 56, 1-8(2020). http://ieeexplore.ieee.org/document/9125872

    [46] Zhang Y, Zhang R H, Zhu Q M et al. Architecture and devices for silicon photonic switching in wavelength, polarization and mode[J]. Journal of Lightwave Technology, 38, 215-225(2019). http://ieeexplore.ieee.org/document/8862881

    [47] Haghighi N, Moser P, Lott J A. 40 Gbps with electrically parallel triple and septuple 980 nm VCSEL arrays[J]. Journal of Lightwave Technology, 38, 3387-3394(2019). http://ieeexplore.ieee.org/document/8941231

    [48] Ma X, Zheng S, Chen Q et al. High-speed directly modulated cylindrical vector beam lasers[J]. ACS Photonics, 6, 3261-3270(2019). http://pubs.acs.org/doi/10.1021/acsphotonics.9b01244

    [49] He M, Xu M, Ren Y et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond[EB/OL]. (2018-07-07)[2021-02-25]. https://arxiv.org/abs/1807.10362v2

    [50] Ayata M, Fedoryshyn Y, Heni W et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 358, 630-632(2017). http://www.ncbi.nlm.nih.gov/pubmed/29097545

    [51] Zhang J, Kuo B P P, Radic S. 64 Gb/s PAM4 and 160 Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD[J]. Optics Express, 28, 23266-23273(2020).

    [52] Muench J E, Ruocco A, Giambra M A et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors[J]. Nano Letters, 19, 7632-7644(2019). http://pubs.acs.org/doi/10.1021/acs.nanolett.9b02238

    [53] Marchetti R, Lacava C, Carroll L et al. Coupling strategies for silicon photonics integrated chips[J]. Photonics Research, 7, 201-239(2019).

    [54] Snyder B, O’Brien P. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3, 954-959(2013). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6416952

    [55] Snyder B, Corbett B, O’Brien P. Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 31, 3934-3942(2013). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-31-24-3934

    [56] Carroll L, Lee J S, Scarcella C et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices[J]. Applied Sciences, 6, 426(2016).

    [57] Barwicz T, Taira Y. Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances[J]. IEEE Photonics Journal, 6, 1-18(2014). http://ieeexplore.ieee.org/document/6838964/

    [58] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).

    [59] Lindenmann N, Balthasar G, Hillerkuss D et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Optics Express, 20, 17667-17677(2012). http://www.ncbi.nlm.nih.gov/pubmed/23038318

    [60] Billah M R, Blaicher M, Hoose T et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding[J]. Optica, 5, 876-883(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-7-876

    [61] Xu Y, Lin J, Dubé-Demers R et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators[J]. Optics Letters, 43, 1554-1557(2018). http://europepmc.org/abstract/MED/29601028

    [62] El-Fiky E, Samani A, Patel D et al. 400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects[J]. Optics Express, 27, 10258-10268(2019). http://www.ncbi.nlm.nih.gov/pubmed/31045169

    [63] Morsy-Osman M, Sowailem M, El-Fiky E et al. DSP-free ‘coherent-lite’ transceiver for next generation single wavelength optical intra-datacenter interconnects[J]. Optics Express, 26, 8890-8903(2018). http://www.ncbi.nlm.nih.gov/pubmed/29715850

    [64] Nagarajan R, Filer M, Fu Y et al. Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects[J]. IEEE/OSA Journal of Optical Communications and Networking, 10, 25-36(2018). http://ieeexplore.ieee.org/document/8410213/

    [65] Billah M R, Blaicher M, Kemal J N et al. 8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding[C]. //Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California, Th5D, 6(2017).

    [66] Zhang C, Bowers J E. Silicon photonic terabit/s network-on-chip for datacenter interconnection[J]. Optical Fiber Technology, 44, 2-12(2018).

    [67] Lal V, Studenkov P, Frost T et al. 1.6 Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC[C]. //2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA., 1-3(2020).

    [68] Filion B, Ng W C, Nguyen A T et al. Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier[J]. Optics Express, 21, 19825-19833(2013). http://europepmc.org/abstract/med/24105531

    [69] Lu G W, Sakamoto T, Kawanishi T. Wavelength conversion of optical 64 QAM through FWM in HNLF and its performance optimization by constellation monitoring[J]. Optics Express, 22, 15-22(2014). http://europepmc.org/abstract/med/24514960

    [70] Furukawa H, Nirmalathas A, Wada N Y et al. Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide[J]. IEEE Photonics Technology Letters, 19, 384-386(2007). http://ieeexplore.ieee.org/document/4116758

    [71] Long Y, Liu J, Hu X et al. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide[J]. Optics Letters, 40, 5475-5478(2015).

    [72] Li C, Gui C, Xiao X et al. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide[J]. Optics Letters, 39, 4583-4586(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-15-4583

    [73] Long Y, Wang Y, Hu X et al. Channel-selective wavelength conversion of quadrature amplitude modulation signal using a graphene-assisted silicon microring resonator[J]. Optics Letters, 42, 799-802(2017).

    [74] Chen G Y, Yu Y, Sun C L et al. Phase erasure and wavelength conversion using silicon nonlinear waveguide with reverse biased PIN junctions[C]. //Asia Communications and Photonics Conference 2015, November 19-23, 2015, Hong Kong, China, AS3J, 4(2015).

    [75] Long Y, Wang A D, Zhou L J et al. All-optical wavelength conversion and signal regeneration of PAM-4 signal using a silicon waveguide[J]. Optics Express, 24, 7158-7167(2016). http://europepmc.org/abstract/med/27137008

    [76] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [77] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser & Photonics Reviews, 8, 368-393(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300126

    [78] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 1-16(2019).

    [79] Sakamoto T, Kawanishi T, Izutsu M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator[J]. Optics Letters, 32, 1515-1517(2007). http://www.opticsinfobase.org/abstract.cfm?id=134565

    [80] Li W, Wang W T, Sun W H et al. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer[J]. IEEE Photonics Journal, 6, 1-8(2014).

    [81] Yang T, Dong J J, Liao S S et al. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers[J]. Optics Express, 21, 8508-8520(2013). http://europepmc.org/abstract/med/23571940

    [82] Washburn B R, Diddams S A, Newbury N R et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 29, 250-252(2004).

    [83] Del’Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000017000001000108000001&idtype=cvips&gifs=Yes

    [84] Griffith A G, Lau R K W, Cardenas J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 1-5(2015).

    [85] Savchenkov A A, Matsko A B, Ilchenko V S et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator[J]. Physical Review Letters, 101, 093902(2008). http://www.ncbi.nlm.nih.gov/pubmed/18851613

    [86] Pfeifle J, Brasch V, Lauermann M et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 8, 375-380(2014). http://www.ncbi.nlm.nih.gov/pubmed/24860615

    [87] Li S Y, Zhou Y Y, Dong J J et al. Universal multimode waveguide crossing based on transformation optics[J]. Optica, 5, 1549-1556(2018).

    [88] Li S Y, Cai L F, Gao D S et al. Compact and broadband multimode waveguide bend by shape-optimizing with transformation optics[J]. Photonics Research, 8, 1843-1849(2020).

    [89] Sun C, Yu Y, Chen G et al. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks[J]. Optics Letters, 41, 3257-3260(2016).

    [90] Sun C, Wu W, Yu Y et al. Integrated tunable mode filter for a mode-division multiplexing system[J]. Optics Letters, 43, 3658-3661(2018).

    [91] Yang L, Zhou T, Jia H et al. General architectures for on-chip optical space and mode switching[J]. Optica, 5, 180-187(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-2-180

    [92] Li M H, Sun C L, Zhao J. Novel spot-size converter based on self-focusing effect[J]. Acta Optica Sinica, 39, 0413001(2019).

    [93] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020).

    [94] Sun C L, Wu W H, Yu Y et al. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing[J]. Nanophotonics, 7, 1571-1580(2018).

    [95] Zheng S, Wang J. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides[J]. Optics Express, 25, 18492-18501(2017). http://europepmc.org/abstract/MED/28789334

    [96] Xu H N, Dai D X, Shi Y C. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth[J]. Photonics Research, 7, 1432-1439(2019). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201912011.htm

    [97] Xu H N, Dai D X, Shi Y C. Metamaterial polarization beam splitter: ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 13, 1970021(2019).

    [98] Meng F, Wang Y X, Mao Q et al. Design and analysis of controllable polarization beam splitter based on multimode interference structure[J]. Laser & Optoelectronics Progress, 56, 051301(2019).

    [99] Guan H, Novack A, Streshinsky M et al. CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler[J]. Optics Express, 22, 2489-2496(2014). http://www.ncbi.nlm.nih.gov/pubmed/24663541

    [100] Wu W H, Yu Y, Liu W et al. Fully integrated CMOS-compatible polarization analyzer[J]. Nanophotonics, 8, 467-474(2019).

    [101] Zhou H L, Zhao Y H, Wei Y X et al. All-in-one silicon photonic polarization processor[J]. Nanophotonics, 8, 2257-2267(2019).

    [102] Fang L, Luo H Z, Cao X P et al. Ultra-directional high-efficiency chiral silicon photonic circuits[J]. Optica, 6, 61-66(2019). http://arxiv.org/abs/1912.00608

    [103] Wang J, Sun J Q, Sun Q Z et al. PPLN-based flexible optical logic and gate[J]. IEEE Photonics Technology Letters, 20, 211-213(2008). http://ieeexplore.ieee.org/document/4429344/

    [104] Qiu J F, Sun K, Rochette M et al. Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 22, 1199-1201(2010).

    [105] Dong J, Zhang X, Wang Y et al. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA[J]. Electronics Letters, 43, 884-886(2007).

    [106] Hou J, Chen L, Dong W C et al. 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide[J]. Optics Express, 24, 2701-2711(2016). http://www.ncbi.nlm.nih.gov/pubmed/26906841

    [107] Xu G Y, Chen Y, Li P L. Three-input all-optical AND gate based on two-dimensional photonic crystal[J]. Chinese Journal of Lasers, 47, 1013002(2020).

    [108] Dong W C, Huang Z Y, Hou J et al. Integrated all-optical programmable logic array based on semiconductor optical amplifiers[J]. Optics Letters, 43, 2150-2153(2018). http://europepmc.org/abstract/MED/29714776

    [109] Wang J, Sun J Q, Zhang X L et al. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate[J]. Optics Letters, 33, 1419-1421(2008).

    [110] Dong W C, Lei L, Chen L et al. All-optical 2×2-bit multiplier at 40 Gb/s based on canonical logic units-based programmable logic array (CLUs-PLA)[J]. Journal of Lightwave Technology, 38, 5586-5594(2020). http://ieeexplore.ieee.org/document/9122574/

    [111] Long Y, Gui C C, Wang A D et al. All-optical three-input simultaneous multicasted quaternary addition/subtraction using non-degenerate FWM in a silicon waveguide and 20 Gibt/s QPSK signal[C]. //Optical Fiber Communication Conference, March 20-22, 2016, Th2A, 6(2016).

    [112] Gui C, Wang J. Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction[J]. Scientific Reports, 4, 7491(2014). http://www.nature.com/articles/srep07491

    [113] Yao J P, Zhang W F. Fully reconfigurable waveguide Bragg gratings for programmable photonic signal processing[J]. Journal of Lightwave Technology, 38, 202-214(2020). http://ieeexplore.ieee.org/document/8936676

    [114] Zheng S, Long Y, Gao D S et al. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor[J]. ACS Photonics, 7, 1235-1245(2020).

    [115] Cao X P, Zheng S, Long Y et al. Mesh-structure-enabled programmable multitask photonic signal processor on a silicon chip[J]. ACS Photonics, 7, 2658-2675(2020). http://pubs.acs.org/doi/10.1021/acsphotonics.9b01230

    [116] Annoni A, Guglielmi E, Carminati M et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light, Science & Applications, 6, e17110(2017).

    [117] Zhou H L, Zhao Y H, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 7, 792-799(2020).

    [118] Chen H W, Yu Z M, Zhang T et al. Advances and challenges of optical neural networks[J]. Chinese Journal of Lasers, 47, 0500004(2020).

    [119] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017). http://www.nature.com/nphoton/journal/v11/n7/nphoton.2017.93/metrics

    [120] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021). http://www.nature.com/articles/s41586-020-03070-1

    Jian Wang, Xiaoping Cao, Xinliang Zhang. On-Chip Integrated Multi-Dimensional Optical Interconnects and Optical Processing[J]. Chinese Journal of Lasers, 2021, 48(12): 1206001
    Download Citation