• Photonics Research
  • Vol. 10, Issue 5, 1187 (2022)
Linling Tan1, Yanqing Fu1, Shiliang Kang1, Lothar Wondraczek2、4、*, Changgui Lin1、5、*, and Yuanzheng Yue3、6、*
Author Affiliations
  • 1Laboratory of IR Materials and Devices, Research Institute of Advanced Technologies, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China
  • 2Otto Schott Institute of Materials Research, University of Jena, 07743 Jena, Germany
  • 3Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
  • 4e-mail: lothar.wondraczek@uni-jena.de
  • 5e-mail: linchanggui@nbu.edu.cn
  • 6e-mail: yy@bio.aau.dk
  • show less
    DOI: 10.1364/PRJ.446416 Cite this Article Set citation alerts
    Linling Tan, Yanqing Fu, Shiliang Kang, Lothar Wondraczek, Changgui Lin, Yuanzheng Yue. Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications[J]. Photonics Research, 2022, 10(5): 1187 Copy Citation Text show less
    References

    [1] A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, J. P. Culver. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photonics, 8, 448-454(2014).

    [2] B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, H.-T. Chen. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl., 7, 51(2018).

    [3] K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics, 11, 63-68(2017).

    [4] A. Zampetti, A. Minotto, F. Cacialli. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater., 29, 1807623(2019).

    [5] C. Dincer, R. Bruch, E. Costa-Rama, M. T. Fernández-Abedul, A. Merkoçi, A. Manz, G. A. Urban, F. Güder. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater., 31, 1806739(2019).

    [6] R. Filippo, E. Taralli, M. Rajteri. LEDs: sources and intrinsically bandwidth-limited detectors. Sensors, 17, 1673(2017).

    [7] X. Zhao, Z.-K. Tan. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics, 14, 215-218(2020).

    [8] Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, C. Sullivan. Developments and challenges in online NIR spectroscopy for meat processing. Compr. Rev. Food Sci. Food Saf., 16, 1172-1187(2017).

    [9] F. F. Jöbsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264-1267(1977).

    [10] G. N. A. De Guzman, S. F. Hu, R. S. Liu. Enticing applications of near-infrared phosphors: review and future perspectives. J. Chin. Chem. Soc., 68, 206-215(2021).

    [11] L. Zhang, D. Wang, Z. Hao, X. Zhang, G.-H. Pan, H. Wu, J. Zhang. Cr3+-doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy. Adv. Opt. Mater., 7, 1900185(2019).

    [12] J. Chen, C. Guo, Z. Yang, T. Li, J. Zhao. Li2SrSiO4:Ce3+, Pr3+ phosphor with blue, red, and near-infrared emissions used for plant growth LED. J. Am. Ceram. Soc., 99, 218-225(2016).

    [13] A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone. Nd:YAG near-infrared luminescent nanothermometers. Adv. Opt. Mater., 3, 687-694(2015).

    [14] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett., 8, 3834-3838(2008).

    [15] E. T. Basore, H. Wu, W. Xiao, G. Zheng, X. Liu, J. Qiu. High-power broadband NIR LEDs enabled by highly efficient blue-to-NIR conversion. Adv. Opt. Mater., 9, 2001660(2021).

    [16] Z. Liao, H. Xu, W. Zhao, H. Yang, J. Zhong, H. Zhang, Z. Nie, Z.-K. Zhou. Energy transfer from Mn4+ to Mn5+ and near infrared emission with wide excitation band in Ca14Zn6Ga10O35:Mn phosphors. Chem. Eng. J., 395, 125060(2020).

    [17] F. Liu, Y. Liang, Y. Chen, Z. Pan. Divalent nickel-activated gallate-based persistent phosphors in the short-wave infrared. Adv. Opt. Mater., 4, 562-566(2016).

    [18] M.-H. Fang, P.-Y. Huang, Z. Bao, N. Majewska, T. Leśniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, C.-W. Yang, K.-M. Lu, H.-S. Sheu, R.-S. Liu. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3:Cr3+ phosphor. Chem. Mater., 32, 2166-2171(2020).

    [19] Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci. Appl., 9, 86(2020).

    [20] P. Penprapa. Nir Luminescence Characteristics of Te-Doped Glasses(2009).

    [21] E. M. Dianov, S. V. Alyshev, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov. IR luminescence of tellurium-doped silica-based optical fibre. Quantum Electron., 42, 189-191(2012).

    [22] L. Tan, S. Kang, Z. Pan, Y. Zhang, Y. Yue, S. Xu, M. Peng, L. Wondraczek. Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification. Adv. Opt. Mater., 4, 1624-1634(2016).

    [23] S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics. J. Ceram. Soc. Jpn., 115, 259-263(2007).

    [24] H.-T. Sun, Y. Sakka, N. Shirahata, M. Fujii, T. Yonezawa. Near-infrared photoluminescence from molecular crystals containing tellurium. J. Mater. Chem., 22, 24792-24797(2012).

    [25] L. Tan, J. C. Mauro, S. Xu, Z. Yang, M. Peng. Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass. Opt. Lett., 43, 4823-4826(2018).

    [26] H. Wu, X. He, B. Yang, C.-C. Li, L. Zhao. Assembly-induced strong circularly polarized luminescence of spirocyclic chiral silver(I) clusters. Angew. Chem. Int. Ed., 60, 1535-1539(2021).

    [27] W.-M. He, Z. Zhou, Z. Han, S. Li, Z. Zhou, L.-F. Ma, S.-Q. Zang. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem. Int. Ed., 60, 8505-8509(2021).

    [28] B. C. Pan. Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters. Phys. Rev. B, 65, 085407(2002).

    [29] G.-G. Lindner, K. Witke, H. Schlaich, D. Reinen. Blue-green ultramarine-type zeolites with dimeric tellurium colour centres. Inorg. Chim. Acta, 252, 39-45(1996).

    [30] J. Beck. Rings, cages and chains—the rich structural chemistry of the polycations of the chalcogens. Coord. Chem. Rev., 163, 55-70(1997).

    [31] L. Tan, L. Huang, M. Peng. D2h-symmetric tetratellurium clusters in silicate glass as a broadband NIR light source for spectroscopy applications. ACS Appl. Mater. Interface, 12, 51628-51636(2020).

    [32] L. Tan, L. Huang, C. He, J. C. Mauro, M. Peng, X.-B. Yang, Y. Yue. Tailoring cluster configurations enables tunable broad-band luminescence in glass. Chem. Mater., 32, 8653-8661(2020).

    [33] W. L. Konijnendijk. The structure of borosilicate glasses(1975).

    [34] D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, L. Wondraczek. Transition and post-transition metal ions in borate glasses: borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties. J. Chem. Phys., 145, 124501(2016).

    [35] Z. Y. Yao, D. Möncke, E. I. Kamitsos, P. Houizot, F. Célarié, T. Rouxel, L. Wondraczek. Structure and mechanical properties of copper-lead and copper-zinc borate glasses. J. Non-Cryst. Solids, 435, 55-68(2016).

    [36] S. Khonthon, P. Punpai, S. Morimoto, Y. Arai, T. Suzuki, Y. Ohishi. On the near-infrared luminescence from TeO2 containing borate glasses. J. Ceram. Soc. Jpn., 116, 829-831(2008).

    [37] P. Hassanzadeh, C. Thompson, L. Andrews. Absorption spectra of tellurium clusters in solid argon. J. Chem. Phys., 96, 8246-8249(1992).

    [38] S. V. Alyshev, K. E. Ryumkin, A. V. Shubin, O. I. Medvedkov, E. M. Dianov, V. F. Khopin, A. N. Gur’yanov. Fibre laser based on tellurium-doped active fibre. Quantum Electron., 44, 95-97(2014).

    [39] G. D. Chryssikos, E. I. Kamitsos, A. P. Patsis, M. A. Karakassides. On the structure of alkali borate glasses approaching the orthoborate composition. Mater. Sci. Eng. B, 7, 1-4(1990).

    [40] C. Calahoo, L. Wondraczek. Ionic glasses: structure, properties and classification. J. Non-Cryst. Solids X, 8, 100054(2020).

    [41] B. N. Meera, A. K. Sood, N. Chandrabhas, J. Ramakrishna. Raman study of lead borate glasses. J. Non-Cryst. Solids, 126, 224-230(1990).

    [42] V. V. Poborchii. Polarized Raman and optical absorption spectra of the mordenite single crystals containing sulfur, selenium, or tellurium in the one-dimensional nanochannels. Chem. Phys. Lett., 251, 230-234(1996).

    [43] L. Koudelka, I. Rösslerová, Z. Černošek, P. Mošner, L. Montagne, B. Revel. The structural role of tellurium dioxide in lead borophosphate glasses. J. Non-Cryst. Solids, 401, 124-128(2014).

    [44] L. Wondraczek, S. Sen, H. Behrens, R. E. Youngman. Structure-energy map of alkali borosilicate glasses: effects of pressure and temperature. Phys. Rev. B, 76, 014202(2007).

    Linling Tan, Yanqing Fu, Shiliang Kang, Lothar Wondraczek, Changgui Lin, Yuanzheng Yue. Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications[J]. Photonics Research, 2022, 10(5): 1187
    Download Citation