• Infrared and Laser Engineering
  • Vol. 50, Issue 5, 20200303 (2021)
Lianwei Fang, Shouxia Shi, and Zhiyong Jiang
Author Affiliations
  • Institute of Beijing Remote Sensing Device, Beijing 100039, China
  • show less
    DOI: 10.3788/IRLA20200303 Cite this Article
    Lianwei Fang, Shouxia Shi, Zhiyong Jiang. Servo mechanism parameter identification of fast steering mirror based on flexible supports[J]. Infrared and Laser Engineering, 2021, 50(5): 20200303 Copy Citation Text show less

    Abstract

    The problems of the two-axis fast steering mirror based on flexible support was put forward firstly, a servo mechanism structure of the two-axis fast steering mirror based on flexible support was introduced briefly, the pulse transfer function of the servo mechanism was established, the MIMO system parameter identification theory was discussed, and the method based on COR-IV method was analyzed. Based on the method, the identification method of servo mechanism based on flexible support for the two-axis fast steering mirror was proposed and simulated. The experiment for the identification of servo mechanism parameters was designed to verify the method and the experimental results were compared with theoretical calculations. The experimental results show that the MIMO system parameter identification algorithm based on the COR-IV method is effective, the identification accuracy is within the expected range, and the identification results can provide data support for the adaptive control of fast steering mirror.
    $\begin{gathered} \left[ {\begin{array}{*{20}{c}} {{\phi _x}(k)} \\ {{\phi _y}(k)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{G_{x\alpha }}({{\textit{z}}^{ - 1}})}&{{G_{x\beta }}({{\textit{z}}^{ - 1}})} \\ {{G_{y\alpha }}({{\textit{z}}^{ - 1}})}&{{G_{y\beta }}({{\textit{z}}^{ - 1}})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] = \\ \begin{array}{*{20}{c}} {}& \end{array}\left[ {\begin{array}{*{20}{c}} {\cos {\theta _X}}&{ - \sin {\theta _Y}} \\ {\sin {\theta _X}}&{\cos {\theta _Y}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{G_\alpha }({{\textit{z}}^{ - 1}})}&0 \\ 0&{{G_\beta }({{\textit{z}}^{ - 1}})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] \\ \end{gathered} $(1)

    View in Article

    $ \begin{split} {G_i}({{\textit{z}}^{ - 1}}) = &{G_i}(s)\left| {_{s = \frac{\scriptstyle{2}}{{{\scriptstyle{T_s}}}}\frac{{\scriptstyle{1 - {{\textit{z}}^{ - 1}}}}}{{\scriptstyle{1 + {{\textit{z}}^{ - 1}}}}}}} \right.\begin{array}{*{20}{c}} { = \dfrac{{{K_{mi}}}}{{{J_i}{s^2} + {K_{si}}}}\left| {_{s = \frac{\scriptstyle{2}}{{{\scriptstyle{T_s}}}}\frac{{\scriptstyle{1 - {{\textit{z}}^{ - 1}}}}}{{\scriptstyle{1 + {{\textit{z}}^{ - 1}}}}}}} \right.} \end{array} =\\ & \begin{array}{*{20}{c}} { \dfrac{{\dfrac{{{k_{mi}}T_s^2}}{{{k_{si}}T_s^2 + 4{J_i}}} + \dfrac{{2{k_{mi}}T_s^2}}{{{k_{si}}T_s^2 + 4{J_i}}}{{\textit{z}}^{ - 1}} + \dfrac{{{k_{mi}}T_s^2}}{{{k_{si}}T_s^2 + 4{J_i}}}{{\textit{z}}^{ - 2}}}}{{1 + 2 \times \dfrac{{{k_{si}}T_s^2 - 4{J_i}}}{{{k_{si}}T_s^2 + 4{J_i}}}{{\textit{z}}^{ - 1}} + {{\textit{z}}^{ - 2}}}}} \end{array} = \\ & \begin{array}{*{20}{c}} { \dfrac{{{b_i}(0) + {b_i}(1){{\textit{z}}^{ - 1}} + {b_i}(2){{\textit{z}}^{ - 2}}}}{{1 + {a_i}(1){{\textit{z}}^{ - 1}} + {a_i}(2){{\textit{z}}^{ - 2}}}}} \end{array} \\ \end{split} $(2)

    View in Article

    $ \begin{split} &\left[ {\begin{array}{*{20}{c}} {{\phi _x}(k)} \\ {{\phi _y}(k)} \end{array}} \right] = {G_b}({{\textit{z}}^{ - 1}}) \cdot \left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] = \\ & \begin{array}{*{20}{c}} \end{array}\left[ {\begin{array}{*{20}{c}} {\dfrac{{{b_\alpha }(0) + {b_\alpha }(1){{\textit{z}}^{ - 1}} + {b_\alpha }(2){{\textit{z}}^{ - 2}}}}{{1 + {a_\alpha }(1){{\textit{z}}^{ - 1}} + {a_\alpha }(2){{\textit{z}}^{ - 2}}}}\cos {\theta _X}} \\ {\dfrac{{{b_\alpha }(0) + {b_\alpha }(1){{\textit{z}}^{ - 1}} + {b_\alpha }(2){{\textit{z}}^{ - 2}}}}{{1 + {a_\alpha }(1){{\textit{z}}^{ - 1}} + {a_\alpha }(2){{\textit{z}}^{ - 2}}}}\sin {\theta _X}} \end{array}} \right. -\\ & \begin{array}{*{20}{c}} {} \end{array}\left. {\begin{array}{*{20}{c}} { \dfrac{{{b_\beta }(0) + {b_\beta }(1){{\textit{z}}^{ - 1}} + {b_\beta }(2){{\textit{z}}^{ - 2}}}}{{1 + {a_\beta }(1){{\textit{z}}^{ - 1}} + {a_\beta }(2){{\textit{z}}^{ - 2}}}}\sin {\theta _Y}} \\ {\dfrac{{{b_\beta }(0) + {b_\beta }(1){{\textit{z}}^{ - 1}} + {b_\beta }(2){{\textit{z}}^{ - 2}}}}{{1 + {a_\beta }(1){{\textit{z}}^{ - 1}} + {a_\beta }(2){{\textit{z}}^{ - 2}}}}\cos {\theta _Y}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] \\ \end{split} $(3)

    View in Article

    $X(k) = {\left[ { - h(k{\rm{ - }}1) \cdots {\rm{ - }}h(k{\rm{ - }}{n_d}){\rm{|}}u(k{\rm{ - }}1) \cdots u(k - {n_a})} \right]^{\rm{T}}}$(4)

    View in Article

    $\left\{ {\begin{array}{*{20}{l}} {\hat \theta (k) = \hat \theta (k - 1) + K(k)[y(k) - \psi _{}^\tau (k)\hat \theta (k - 1)]} \\ {K(k) = P(k - 1)X(k){{\left[ {\psi _{}^\tau (k)P(k - 1)X(k) + 1} \right]}^{{\rm{ - }}1}}} \\ {P(k) = [I - K(k)\psi _{}^\tau (k)]P(k - 1)} \end{array}} \right.$(5)

    View in Article

    $\psi (k) = {\left[ { - y(k{\rm{ - }}1) \cdots - y(k{\rm{ - }}{n_{\rm{a}}}){\rm{|}}u(k{\rm{ - }}1) \cdots u(k - {n_b})} \right]^{\rm{T}}}$ ()

    View in Article

    $ \begin{split} \left[ {\begin{array}{*{20}{c}} {{\phi _x}(k)} \\ {{\phi _y}(k)} \end{array}} \right] = & \left[ {\begin{array}{*{20}{c}} {{G_{x\alpha }}({{\textit{z}}^{ - 1}})}{{G_{x\beta }}({{\textit{z}}^{ - 1}})} \\ {{G_{y\alpha }}({{\textit{z}}^{ - 1}})}{{G_{y\beta }}({{\textit{z}}^{ - 1}})} \end{array}} \right] \cdot \\ \begin{array}{*{20}{c}} \end{array} & \left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{\nu _{{x}}}(k)} \\ {{\nu _{{y}}}(k)} \end{array}} \right] \\ \end{split} $(6)

    View in Article

    $\begin{gathered} {\phi _x}(k) = {G_{x\alpha }}({{\textit{z}}^{ - 1}}){u_\alpha }(k) + \\ \begin{array}{*{20}{c}} {}&{}&{\begin{array}{*{20}{c}} {}&{} \end{array}} \end{array}{G_{x\beta }}({{\textit{z}}^{ - 1}}){u_\beta }(k) + {\nu _{{x}}}(k) \\ \end{gathered} $(7)

    View in Article

    $ \begin{split} {\phi _x}(k) = &{G_{x\alpha }}({{\textit{z}}^{ - 1}}){u_\alpha }(k) + {\nu _{x\beta }}(k) =\\ \begin{array}{*{20}{c}} \end{array} &\frac{{{B_{x\alpha }}({{\textit{z}}^{ - 1}})}}{{{A_{x\alpha }}({{\textit{z}}^{ - 1}})}}{u_\alpha }(k) + {\nu _\beta }(k) + {\nu _{{x}}}(k) = \\ \begin{array}{*{20}{c}} \end{array} &\frac{{{b_{x\alpha }}(0) + {b_{x\alpha }}(1){{\textit{z}}^{ - 1}} + {b_{x\alpha }}(2){{\textit{z}}^{ - 2}}}}{{1 + {a_{x\alpha }}(1){{\textit{z}}^{ - 1}} + {a_{x\alpha }}(2){{\textit{z}}^{ - 2}}}}{u_\alpha }(k) + \\ \begin{array}{*{20}{c}} \end{array} &{\nu _\beta }(k) + {\nu _{{x}}}(k) \\ \end{split} $(8)

    View in Article

    $ \begin{split} &{R}_{{\psi }_{x}{u}_{\alpha }}(\tau )={h}_{x\alpha }^{{\rm{T}}}(\tau )\widehat{\theta }+n(\tau )=\\ \begin{array}{ccc} \end{array} &\begin{array}{cc}(-{R}_{{\psi }_{x}{u}_{\alpha }}(\tau -1) -{R}_{{\psi }_{x}{u}_{\alpha }}(\tau -2)\begin{array}{c}\end{array}\end{array}{R}_{{u}_{\alpha }}(\tau )\cdot\\ &\begin{array}{cc} {R}_{{u}_{\alpha }}(\tau -1){R}_{{u}_{\alpha }}(\tau -2)\end{array})\left(\begin{array}{c}{a}_{x\alpha }(1)\\ {a}_{x\alpha }(2)\\ {b}_{x\alpha }(0)\\ \begin{array}{l}{b}_{x\alpha }(1)\\ {b}_{x\alpha }(2)\end{array}\end{array}\right)+{A}_{x\alpha }({{\textit{z}}}^{-1}){R}_{{\nu }_{x\beta }{u}_{\alpha }}(\tau ),\\ &\begin{array}{ccc} \end{array}\tau =\cdots ,\rm{-}2,\rm{-}1, 0, 1, 2, \cdots \end{split} $(9)

    View in Article

    $\begin{gathered} {h^{\rm{*}}}(\tau ) = \left( {{R_{{u_\alpha }}}(\tau ){R_{{u_\alpha }}}(\tau - 1)}\cdot \right. \\ \begin{array}{*{20}{c}} {}&{} \end{array}\left. {{R_{{u_\alpha }}}(\tau - 2){R_{{u_\alpha }}}(\tau - 3){R_{{u_\alpha }}}(\tau - 4)} \right) \\ \end{gathered} $(10)

    View in Article

    $\left\{ {\begin{array}{*{20}{l}} \begin{gathered} {{\hat \theta }_{x\alpha }}(k) = {{\hat \theta }_{x\alpha }}(k - 1) + {K_{x\alpha }}(k) \cdot \\ \begin{array}{*{20}{c}} {}&{}&{} \end{array}[{{\hat R}_{{\psi _x}{u_\alpha }}}(2|k) - h_{_{x\alpha }}^{\rm{T}}(2|k){{\hat \theta }_{x\alpha }}(k - 1)] \\ \end{gathered} \\ \begin{gathered} {K_{x\alpha }}(k) = {P_{x\alpha }}(k - 1)h_{_{x\alpha }}^{\rm{*}}(4|k) \cdot \\ \begin{array}{*{20}{c}} {}&{}&{} \end{array}{\left[ {h_{_{x\alpha }}^{\rm{T}}(4|k){P_{x\alpha }}(k - 1)h_{_{x\alpha }}^*(2|k) + 1} \right]^{{\rm{ - }}1}} \\ \end{gathered} \\ {{P_{x\alpha }}(k) = [I - {K_{x\alpha }}(k)h_{_{x\alpha }}^{\rm{T}}(4|k)]{P_{x\alpha }}(k - 1)} \end{array}} \right.$(11)

    View in Article

    $ \begin{split} \left[ {\begin{array}{*{20}{c}} {{\phi _x}(k)} \\ {{\phi _y}(k)} \end{array}} \right] =& {{\hat G}_b}({{\textit{z}}^{ - 1}}) \cdot \left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] =\\ \begin{array}{*{20}{c}} \end{array} &\begin{array}{*{20}{c}} \end{array}\left[ {\begin{array}{*{20}{c}} {\dfrac{{{{\hat b}_{x\alpha }}(0) + {{\hat b}_{x\alpha }}(1){{\textit{z}}^{ - 1}} + {{\hat b}_{x\alpha }}(2){{\textit{z}}^{ - 2}}}}{{1 + {{\hat a}_{x\alpha }}(1){{\textit{z}}^{ - 1}} + {{\hat a}_{x\alpha }}(2){{\textit{z}}^{ - 2}}}}} \\ {\dfrac{{{{\hat b}_{y\alpha }}(0) + {{\hat b}_{y\alpha }}(1){{\textit{z}}^{ - 1}} + {{\hat b}_{y\alpha }}(2){{\textit{z}}^{ - 2}}}}{{1 + {{\hat a}_{y\alpha }}(1){{\textit{z}}^{ - 1}} + {{\hat a}_{y\alpha }}(2){{\textit{z}}^{ - 2}}}}} \end{array}} \right. - \\ & \begin{array}{*{20}{c}} \end{array}\left. {\begin{array}{*{20}{c}} { \dfrac{{{{\hat b}_{x\beta }}(0) + {{\hat b}_{x\beta }}{{\textit{z}}^{ - 1}} + {{\hat b}_{x\beta }}(2){{\textit{z}}^{ - 2}}}}{{1 + {{\hat a}_{x\beta }}(1){{\textit{z}}^{ - 1}} + {{\hat a}_{x\beta }}(1){{\textit{z}}^{ - 2}}}}} \\ {\dfrac{{{{\hat b}_{y\beta }}(0) + {{\hat b}_{y\beta }}(1){{\textit{z}}^{ - 1}} + {{\hat b}_{y\beta }}(2){{\textit{z}}^{ - 2}}}}{{1 + {{\hat a}_{y\beta }}(1){{\textit{z}}^{ - 1}} + {{\hat a}_{y\beta }}(2){{\textit{z}}^{ - 2}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_\alpha }(k)} \\ {{u_\beta }(k)} \end{array}} \right] \\ \end{split} $(12)

    View in Article

    $\left\{ {\begin{array}{*{20}{c}} {{{\hat b}_\alpha }(0)\cos {{\hat \theta }_X} = {{\hat b}_{x\alpha }}(0)}\\ {{{\hat b}_\alpha }(1)\cos {{\hat \theta }_X} = {{\hat b}_{x\alpha }}(1)}\\ {{{\hat b}_\alpha }(2)\cos {{\hat \theta }_X} = {{\hat b}_{x\alpha }}(2)}\\ {{{\hat b}_\alpha }(0)\sin {{\hat \theta }_X} = {{\hat b}_{y\alpha }}(0)}\\ {{{\hat b}_\alpha }(1)\sin {{\hat \theta }_X} = {{\hat b}_{y\alpha }}(1)}\\ {{{\hat b}_\alpha }(2)\sin {{\hat \theta }_X} = {{\hat b}_{y\alpha }}(2)}\\ {{{\hat b}_\beta }(0)\cos {{\hat \theta }_Y} = {{\hat b}_{x\beta }}(0)}\\ {{{\hat b}_\beta }(1)\cos {{\hat \theta }_Y} = {{\hat b}_{x\beta }}(1)}\\ {{{\hat b}_\beta }(2)\cos {{\hat \theta }_Y} = {{\hat b}_{x\beta }}(2)}\\ {{{\hat b}_\beta }(0)\sin {{\hat \theta }_Y} = {{\hat b}_{y\beta }}(0)}\\ {{{\hat b}_\beta }(1)\sin {{\hat \theta }_Y} = {{\hat b}_{y\beta }}(1)}\\ {{{\hat b}_\beta }(2)\sin {{\hat \theta }_Y} = {{\hat b}_{y\beta }}(2)} \end{array}} \right.{\text{及}}\left\{ {\begin{array}{*{20}{l}} {{{\hat a}_\alpha }(1) = {{\hat a}_{x\alpha }}(1)}\\ {{{\hat a}_\alpha }(1) = {{\hat a}_{y\alpha }}(1)}\\ {{{\hat a}_\alpha }(2) = {{\hat a}_{x\alpha }}(2)}\\ \begin{array}{l} {{\hat a}_\alpha }(2) = {{\hat a}_{y\alpha }}(2)\\ {{\hat a}_\beta }(1) = {{\hat a}_{x\beta }}(1)\\ {{\hat a}_\beta }(1) = {{\hat a}_{y\beta }}(1)\\ {{\hat a}_\beta }(2) = {{\hat a}_{x\beta }}(2)\\ {{\hat a}_\beta }(2) = {{\hat a}_{y\beta }}(2) \end{array} \end{array}} \right.$(13)

    View in Article

    $ \left\{ \begin{array}{l}{\widehat{b}}_{\alpha }(0)=\pm \sqrt{{\widehat{b}}_{x\alpha }^{2}(0)+{\widehat{b}}_{y\alpha }^{2}(0)} \begin{array}{cc} {\widehat{b}}_{\alpha }(1)=\pm \sqrt{{\widehat{b}}_{x\alpha }^{2}(1)+{\widehat{b}}_{y\alpha }^{2}(1)}\end{array}\\ \\ {\widehat{b}}_{\alpha }(2)=\pm \sqrt{{\widehat{b}}_{x\alpha }^{2}(2)+{\widehat{b}}_{y\alpha }^{2}(2)}\begin{array}{cc} {\widehat{b}}_{\beta }(0)=\pm \sqrt{{\widehat{b}}_{x\beta }^{2}(0)+{\widehat{b}}_{y\beta }^{2}(0)}\end{array}\\ \\ {\widehat{b}}_{\beta }(1)=\pm \sqrt{{\widehat{b}}_{x\beta }^{2}(1)+{\widehat{b}}_{y\beta }^{2}(1)}\begin{array}{cc} {\widehat{b}}_{\beta }(2)=\pm \sqrt{{\widehat{b}}_{x\beta }^{2}(2)+{\widehat{b}}_{y\beta }^{2}(2)}\end{array}\\ \\\mathrm{cos}{\theta }_{X}=\sqrt{\frac{{\widehat{b}}_{x\alpha }^{2}(0)+{\widehat{b}}_{x\alpha }^{2}(1)+{\widehat{b}}_{x\alpha }^{2}(2)}{\begin{array}{l}{\widehat{b}}_{x\alpha }^{2}(0)+{\widehat{b}}_{x\alpha }^{2}(1)+{\widehat{b}}_{x\alpha }^{2}(2)+\\ \begin{array}{cc}\end{array}{\widehat{b}}_{y\alpha }^{2}(0)+{\widehat{b}}_{y\alpha }^{2}(1)+{\widehat{b}}_{y\alpha }^{2}(2)\end{array}}}\\ \mathrm{sin}{\theta }_{X}=\sqrt{\frac{{\widehat{b}}_{y\alpha }^{2}(0)+{\widehat{b}}_{y\alpha }^{2}(1)+{\widehat{b}}_{y\alpha }^{2}(2)}{\begin{array}{l}{\widehat{b}}_{x\alpha }^{2}(0)+{\widehat{b}}_{x\alpha }^{2}(1)+{\widehat{b}}_{x\alpha }^{2}(2)+\\ \begin{array}{cc} \end{array}{\widehat{b}}_{y\alpha }^{2}(0)+{\widehat{b}}_{y\alpha }^{2}(1)+{\widehat{b}}_{y\alpha }^{2}(2)\end{array}}}\\ \mathrm{cos}{\theta }_{Y}=\sqrt{\frac{{\widehat{b}}_{x\beta }^{2}(0)+{\widehat{b}}_{x\beta }^{2}(1)+{\widehat{b}}_{x\beta }^{2}(2)}{\begin{array}{l}{\widehat{b}}_{x\beta }^{2}(0)+{\widehat{b}}_{x\beta }^{2}(1)+{\widehat{b}}_{x\beta }^{2}(2)+\\ \begin{array}{cc} \end{array}{\widehat{b}}_{y\beta }^{2}(0)+{\widehat{b}}_{y\beta }^{2}(1)+{\widehat{b}}_{y\beta }^{2}(2)\end{array}}}\\ \mathrm{sin}{\theta }_{Y}=\sqrt{\dfrac{{\widehat{b}}_{y\beta }^{2}(0)+{\widehat{b}}_{y\beta }^{2}(1)+{\widehat{b}}_{y\beta }^{2}(2)}{\begin{array}{l}{\widehat{b}}_{x\beta }^{2}(0)+{\widehat{b}}_{x\beta }^{2}(1)+{\widehat{b}}_{x\beta }^{2}(2)+\\ \begin{array}{cc}& \end{array}{\widehat{b}}_{y\beta }^{2}(0)+{\widehat{b}}_{y\beta }^{2}(1)+{\widehat{b}}_{y\beta }^{2}(2)\end{array}}}\\ {\widehat{a}}_{\alpha }(1)=\dfrac{{\widehat{a}}_{x\alpha }(1)+{\widehat{a}}_{y\alpha }(1)}{2},{\widehat{a}}_{\alpha }(2)=\dfrac{{\widehat{a}}_{x\alpha }(2)+{\widehat{a}}_{y\alpha }(2)}{2}\\ {\widehat{a}}_{\beta }(1)=\dfrac{{\widehat{a}}_{x\beta }(1)+{\widehat{a}}_{y\beta }(1)}{2},{\widehat{a}}_{\beta }(2)=\dfrac{{\widehat{a}}_{x\beta }(2)+{\widehat{a}}_{y\beta }(2)}{2}\end{array}\right.$(14)

    View in Article

    $ \begin{split} &G({{\textit{z}}^{ - 1}}) = \left[ {\begin{array}{*{20}{c}} {\sqrt {\rm{2}} /2}\;\;\;\;\;\;\;\;{ - \sqrt {\rm{2}} /2}\\ {\sqrt {\rm{2}} /2}\;\;\;\;\;\;\;\;{\sqrt {\rm{2}} /2} \end{array}} \right] \cdot \\ &\left[ {\begin{array}{*{20}{c}} {\dfrac{{{\rm{0}}{\rm{.3}} + {\rm{0}}{\rm{.55}}{{\textit{z}}^{ - 1}} + {\rm{0}}{\rm{.35}}{{\textit{z}}^{ - 2}}}}{{1 - {\rm{1}}{\rm{.55}}{{\textit{z}}^{ - 1}} + 0.72{{\textit{z}}^{ - 2}}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0\\ {\rm{0}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\dfrac{{{\rm{0.3}} + {\rm{0}}{\rm{.45}}{{\textit{z}}^{ - 1}} + {\rm{0}}{\rm{.50}}{{\textit{z}}^{ - 2}}}}{{1 - {\rm{1}}{\rm{.50}}{{\textit{z}}^{ - 1}} + 0.71{{\textit{z}}^{ - 2}}}}} \end{array}} \right] \end{split} $()

    View in Article

    Lianwei Fang, Shouxia Shi, Zhiyong Jiang. Servo mechanism parameter identification of fast steering mirror based on flexible supports[J]. Infrared and Laser Engineering, 2021, 50(5): 20200303
    Download Citation