• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1109001 (2021)
Tingting Wei1, Jiazhi Yang1、*, Guoqing Zhou2, Xiang Zhou2、3, and Xueqin Nong4
Author Affiliations
  • 1College of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541006, China
  • 2Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin, Guangxi 541006, China
  • 3School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 4The 34th Research Institute of China Electronics Technology Group Corporation, Guilin, Guangxi 541004, China
  • show less
    DOI: 10.3788/CJL202148.1109001 Cite this Article Set citation alerts
    Tingting Wei, Jiazhi Yang, Guoqing Zhou, Xiang Zhou, Xueqin Nong. Shallow-Water LiDAR Echo Signal Denoising Based on Improved EWT[J]. Chinese Journal of Lasers, 2021, 48(11): 1109001 Copy Citation Text show less
    References

    [1] Kogut T, Bakula K. Improvement of full waveform airborne laser bathymetry data processing based on waves of neighborhood points[J]. Remote Sensing, 11, 1255(2019). http://www.researchgate.net/publication/333407473_Improvement_of_Full_Waveform_Airborne_Laser_Bathymetry_Data_Processing_based_on_Waves_of_Neighborhood_Points

    [2] Zhou G Q, Zhou X. Principle, technology and application of array LiDAR imaging[M], 1-11(2017).

    [3] Chen X C, Yu X N, Tong S F et al. An investigation on a pulse-shaping circuit inlidar systems[J]. Laser & Optoelectronics Progress, 57, 192804(2020).

    [4] Zhou G Q, Zhou X, Yang J Z et al. Flash LiDAR sensor using fiber-coupled APDs[J]. IEEE Sensors Journal, 15, 4758-4768(2015). http://ieeexplore.ieee.org/document/7091861

    [5] Hu S J, He Y, Yu J Y et al. Method for solving echo time of pulse laser ranging based on deep learning[J]. Chinese Journal of Lasers, 46, 1010001(2019).

    [6] Ma J P, Shang J H, Sun J T et al. Laser ranging system based on high-speed pulse modulation and echo sampling[J]. Chinese Journal of Lasers, 46, 0810004(2019).

    [7] Zhang L Y, Chang J H, Li H X et al. Noise reduction of LiDAR signal via local mean decomposition combined with improved thresholding method[J]. IEEE Access, 8, 113943-113952(2020). http://ieeexplore.ieee.org/document/9121225

    [8] Cao N W, Zhu C X, Kai Y F et al. A method of background noise reduction in lidar data[J]. Applied Physics B, 113, 115-123(2013). http://link.springer.com/article/10.1007/s00340-013-5447-9

    [9] Lai X D, Zheng M. A denoising method for LiDAR full-waveform data[J]. Mathematical Problems in Engineering, 10, 99-111(2015).

    [10] Li H P, Li G Y, Cai Z J et al. Full-waveform LiDAR echo decomposition method[J]. Journal of Remote Sensing, 23, 89-98(2019).

    [11] Xia L L, He Z Y, Li X P et al. A fault location method based on natural frequencies and empirical mode decomposition for mixed overhead-cable lines[J]. Automation of Electric Power Systems, 34, 67-73(2010).

    [12] Schwarz R, Mandlburger G, Pfennigbauer M et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 1-10(2019). http://www.sciencedirect.com/science/article/pii/S0924271619300358

    [13] Huang D M, Xu J H, Song W et al. Comparison and analysis of Gaussian decomposition and Gaussian wavelet decomposition for GLAS full waveform data[J]. Laser & Optoelectronics Progress, 55, 112801(2018).

    [14] Wang C S, Li Q Q, Liu Y X et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 22-35(2015). http://www.sciencedirect.com/science/article/pii/S0924271614002718

    [15] Hofton M A, Minster J B, Blair J B et al. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 38, 1989-1996(2000). http://search.ebscohost.com/login.aspx?direct=trueu0026db=buhu0026AN=3482854u0026site=ehost-live

    [16] Wang H X, Liu J G, Zhang T S et al. An empirical mode decomposition algorithm based on cross validation and its application tolidar return signal de-noising[J]. Chinese Journal of Lasers, 41, 1014001(2014).

    [17] Li D, Xu L J, Li X L et al. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization[J]. Measurement Science and Technology, 28, 045205(2017).

    [18] Xu Y G, Deng Y J, Zhao J Y et al. A novel rolling bearing fault diagnosis method based on empirical wavelet transform and spectral trend[J]. IEEE Transactions on Instrumentation and Measurement, 69, 2891-2904(2020). http://ieeexplore.ieee.org/document/8762231

    [19] Xia S, Zhou G H. Endpoint effect suppression based on multipoint extension in bearing fault diagnosis[J]. International Journal of Pattern Recognition and Artificial Intelligence, 33, 1950015(2019). http://www.worldscientific.com/doi/10.1142/S0218001419500150

    [20] Xue W, Dai X Y, Zhu J C et al. A noise suppression method of ground penetrating radar based on EEMD and permutation entropy[J]. IEEE Geoscience and Remote Sensing Letters, 16, 1625-1629(2019). http://ieeexplore.ieee.org/document/8676310/

    [21] Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 61, 3999-4010(2013).

    [22] Liu C, Xie H, Xiao Y L et al. Research on empirical wavelet transform algorithm in ECG signal filtering[J]. Journal of Electronic Measurement and Instrumentation, 31, 1835-1842(2017).

    [23] Huang H R, Li K, Su W S et al. An improved empirical wavelet transform method for rolling bearing fault diagnosis[J]. Science China Technological Sciences, 63, 2231-2240(2020). http://link.springer.com/article/10.1007/s11431-019-1522-1

    [24] Abady L, Bailly J S, Baghdadi N et al. Assessment of quadrilateral fitting of the water column contribution in lidar waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 11, 813-817(2014).

    [25] Duan Y H, Zhang A W, Liu Z et al. A Gaussian inflexion points matching method for Gaussian decomposition of airborne LiDAR waveform data[J]. Laser & Optoelectronics Progress, 51, 102801(2014).

    [26] Xing S, Wang D, Xu Q et al. A depth-adaptive waveform decomposition method for airborne LiDAR bathymetry[J]. Sensors, 19, 5065(2019). http://www.ncbi.nlm.nih.gov/pubmed/31757030

    [27] Ma H, Zhou W, Zhang L et al. Decomposition of small-footprint full waveform LiDAR data based on generalized Gaussian model and grouping LM optimization[J]. Measurement Science Technology, 28, 045203(2017).

    [28] Guo K, Liu Y X, Xu W X et al. Comparison of LM and EM parameter optimization methods for airborne laser bathymetric full-waveform decomposition[J]. Acta Geodaetica et Cartographica Sinica, 49, 117-131(2020).

    [29] Gilles J, Heal K. A parameterless scale-space approach to find meaningful modes in histograms-application to image and spectrum segmentation[J]. International Journal of Wavelets, Multiresolution and Information Processing, 12, 1450044(2014). http://www.worldscientific.com/doi/10.1142/S0219691314500441

    [30] Ayache A. Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases[J]. Applied and Computational Harmonic Analysis, 10, 99-111(2001). http://www.ams.org/mathscinet-getitem?mr=1808683

    Tingting Wei, Jiazhi Yang, Guoqing Zhou, Xiang Zhou, Xueqin Nong. Shallow-Water LiDAR Echo Signal Denoising Based on Improved EWT[J]. Chinese Journal of Lasers, 2021, 48(11): 1109001
    Download Citation