• Photonics Research
  • Vol. 8, Issue 11, 1687 (2020)
Zhenhong Wang1、†, Bin Zhang1、†, Bing Hu1, Zhongjun Li1, Chunyang Ma1, Yu Chen1, Yufeng Song1, Han Zhang1, Jun Liu1、*, and Guohui Nie1、2
Author Affiliations
  • 1Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2e-mail: nghui@21cn.com
  • show less
    DOI: 10.1364/PRJ.398203 Cite this Article Set citation alerts
    Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687 Copy Citation Text show less
    References

    [1] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [2] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 14, 37-43(2020).

    [3] Z. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 10, 227-238(2016).

    [4] Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, H. Zhang. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon. Res., 7, 494-502(2019).

    [5] T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon. Res., 8, 78-90(2020).

    [6] J. Liu, Y. Chen, Y. Li, H. Zhang, S. Zheng, S. Xu. Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. Photon. Res., 6, 198-203(2018).

    [7] H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, Y. Liu. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photon. Res., 6, 900-907(2018).

    [8] J. M. Gonzalez, I. I. Oleynik. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B, 94, 125443(2016).

    [9] C. Cheng, Z. Li, N. Dong, J. Wang, F. Chen. Tin diselenide as a new saturable absorber for generation of laser pulses at 1 μm. Opt. Express, 25, 6132-6140(2017).

    [10] R. Sun, H. Zhang, N. Xu. High-power passively Q-switched Yb-doped fiber laser based on tin selenide as a saturable absorber. Laser Phys., 28, 085105(2018).

    [11] Q. Hu, X. Zhang, Z. Liu, P. Li, M. Li, Z. Cong, Z. Qin, X. Chen. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt. Laser Technol., 119, 105639(2019).

    [12] J.-S. Liu, X.-H. Li, Y.-X. Guo, A. Qyyum, Z.-J. Shi, T.-C. Feng, Y. Zhang, C.-X. Jiang, X.-F. Liu. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 15, 1902811(2019).

    [13] M. Wang, Z. Wang, X. Xu, S. Duan, C. Du. Tin diselenide-based saturable absorbers for eye-safe pulse lasers. Nanotechnology, 30, 265703(2019).

    [14] B. Ran, H. Sun, Y. Ma. Two-dimensional tin diselenide passively Q-switched 2  μm Tm:YAP laser. Infrared Phys. Technol., 105, 103227(2020).

    [15] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [16] J. Ma, Z. Qin, G. Xie, L. Qian, D. Tang. Review of mid-infrared mode-locked laser sources in the 2.0  μm–3.5  μm spectral region. Appl. Phys. Rev., 6, 021317(2019).

    [17] K. Anbarasi, C. Hemanth, R. G. Sangeetha. A review on channel models in free space optical communication systems. Opt. Laser Technol., 97, 161-171(2017).

    [18] D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, A. Fuerbach. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).

    [19] W. Ni-Meister, W. Yang, S. Lee, A. H. Strahler, F. Zhao. Validating modeled lidar waveforms in forest canopies with airborne laser scanning data. Remote Sens. Environ., 204, 229-243(2018).

    [20] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [21] Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev., 6, 021313(2019).

    [22] J. Liu, J. Wu, H. Chen, Y. Chen, Z. Wang, C. Ma, H. Zhang. Short-pulsed Raman fiber laser and its dynamics. Sci. China Phys. Mech. Astron., 64, 214201(2021).

    [23] M. Liu, T.-J. Li, A.-P. Luo, W.-C. Xu, Z.-C. Luo. Periodic’ soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser. Photon. Res., 8, 246-251(2020).

    [24] M. Liu, Z.-W. Wei, H. Li, T.-J. Li, A.-P. Luo, W.-C. Xu, Z.-C. Luo. Visualizing the ‘invisible’ soliton pulsation in an ultrafast laser. Laser Photon. Rev., 14, 1900317(2020).

    [25] T. Feng, D. Zhang, X. Li, Q. Abdul, Z. Shi, J. Lu, P. Guo, Y. Zhang, J. Liu, Q. J. Wang. SnS2 nanosheets for Er-doped fiber lasers. ACS Appl. Nano Mater., 3, 674-681(2020).

    [26] Y. Song, Z. Wang, C. Wang, K. Panajotov, H. Zhang. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photon., 2, 024001(2020).

    [27] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz. How to excite a rogue wave. Phys. Rev. A, 80, 043818(2009).

    [28] D. R. Solli, C. Ropers, P. Koonath, B. Jalali. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [29] K. Hammani, C. Finot, J. M. Dudley, G. Millot. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. Opt. Express, 16, 16467-16474(2008).

    [30] M. G. Kovalsky, A. A. Hnilo, J. R. Tredicce. Extreme events in the Ti:sapphire laser. Opt. Lett., 36, 4449-4451(2011).

    [31] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, N. Akhmediev. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett., 108, 233901(2012).

    [32] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz. Could rogue waves be used as efficient weapons against enemy ships?. Eur. Phys. J. Spec. Top., 185, 259-266(2010).

    [33] A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, G. Steinmeyer. Rogue events in the group velocity horizon. Sci. Rep., 2, 850(2012).

    [34] M. Liu, Z.-R. Cai, S. Hu, A.-P. Luo, C.-J. Zhao, H. Zhang, W.-C. Xu, Z.-C. Luo. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett., 40, 4767-4770(2015).

    [35] Z. Cai, M. Liu, S. Hu, J. Yao, A. Luo, Z. Luo, W. Xu. Graphene-decorated microfiber photonic device for generation of rogue waves in a fiber laser. IEEE J. Sel. Top. Quantum Electron., 23, 20-25(2017).

    [36] Z.-C. Luo, M. Liu, A.-P. Luo, W.-C. Xu. Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers. Chin. Phys. B, 27, 094215(2018).

    [37] B. Zhang, G. Sun, S. Ding, H. Asakura, J. Zhang, P. Sautet, N. Yan. Atomically dispersed Pt1–polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity?. J. Am. Chem. Soc., 141, 8185-8197(2019).

    [38] X. Chen, B. Zhang, Y. Wang, N. Yan. Valorization of renewable carbon resources for chemicals. CHIMIA Int. J. Chem., 69, 120-124(2015).

    [39] X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang. Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater., 27, 1606834(2017).

    [40] B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De, N. Yan. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed., 55, 8319-8323(2016).

    [41] M. Pawar, S. Kadam, D. J. Late. High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets. ChemistrySelect, 2, 4068-4075(2017).

    [42] T. Pei, L. Bao, G. Wang, R. Ma, H. Yang, J. Li, C. Gu, S. Pantelides, S. Du, H.-J. Gao. Few-layer SnSe2 transistors with high on/off ratios. Appl. Phys. Lett., 108, 053506(2016).

    [43] H. Zhang, D. Y. Tang, L. M. Zhao, N. Xiang. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express, 16, 12618-12623(2008).

    [44] M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee. Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction. Opt. Express, 23, 19996-20006(2015).

    [45] Y. Zhou, Z. Zhang, W. Jiang, P. Gao, X. Zhang, W. Zhang, Y. Zhang, A. Qyyum, X. Li, M. Liao, W. Gao. A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles. J. Mater. Chem. C, 7, 11215-11219(2019).

    [46] T. Wang, W. Ma, Q. Jia, Q. Su, P. Liu, P. Zhang. Passively mode-locked fiber lasers based on nonlinearity at 2-μm band. IEEE J. Sel. Top. Quantum Electron., 24, 1102011(2018).

    [47] Z. Wang, H. Li, M. Luo, T. Chen, X. Xia, H. Chen, C. Ma, J. Guo, Z. He, Y. Song, J. Liu, X. Jiang, H. Zhang. MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Appl. Nano Mater., 3, 3513-3522(2020).

    [48] Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, K. P. Chen. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Appl. Phys. Lett., 102, 131117(2013).

    [49] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 40, 3885-3888(2015).

    [50] K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, J. Hou. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photon. Res., 3, 72-76(2015).

    [51] J. Wang, W. Lu, J. Li, H. Chen, Z. Jiang, J. Wang, W. Zhang, M. Zhang, I. L. Li, Z. Xu, W. Liu, P. Yan. Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2. IEEE J. Sel. Top. Quantum Electron., 24, 1100706(2018).

    [52] M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, S. Ruan. Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics. APL Photon., 4, 090801(2019).

    [53] J. Guo, Z. Wang, R. Shi, Y. Zhang, Z. He, L. Gao, R. Wang, Y. Shu, C. Ma, Y. Ge, Y. Song, D. Fan, J. Xu, H. Zhang. Graphdiyne as a promising mid-infrared nonlinear optical material for ultrafast photonics. Adv. Opt. Mater., 8, 2000067(2020).

    Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687
    Download Citation