[1] A Singh, V Srivastav, R Pal. HgCdTe avalanche photodiodes: A review. Optics & Laser Technology, 43, 1358-1370(2011).
[2] M B Reine, J W Marciniec, K K Wong, et al. Characterization of HgCdTe MWIR back-illuminated electron-initiated avalanche photodiodes. J Electron Mater, 37, 1376-1386(2008).
[3] Jack M, Wehner J, Edwards J, et al. HgCdTe APDbased linearmode photon counting components ladar receivers[C]Proceedings of SPIE, 2011, 8033: 80330M.
[4] Sun X, Abshire J B, Beck J D. HgCdTe eAPD detect arrays with single photon sensitivity f space lidar applications[C]Proceedings of SPIE, 2014, 9114: 91140K.
[5] Baker I, Maxey C, Hipwood L, et al. Leonardo (fmerly Selex ES) infrared senss f astronomy: Present future[C]High Energy, Optical, Infrared Detects f Astronomy VII, 2016.
[7] Beck J D, Wan C F, Kinch M A, et al. MWIR HgCdTe avalanche photodiodes[C]Proceedings of SPIE, 2001, 4454: 188197.
[8] Baker I M, Duncan S S, Copley J W. A lownoise lasergated imaging system f longrange target identification[C]Proceedings of SPIE, 2004, 5406: 133144.
[10] Bailey S, Mckeag W, Wang J, et al. Advances in HgCdTe APDs LADAR receivers[C]Proceedings of SPIE, 2010, 7660: 76603I .
[11] Bniol E D, Castelein P, Guellec F, et al. A 320×256 HgCdTe avalanche photodiode focal plane array f passive active 2D 3D imaging[C]Infrared Technology & Applications XXXVII, 2011.
[12] Philippe Feautrier, JeanLuc Gach, Sylvain Guieu, et al. Revolutionary visible infrared sens detects f the most advanced astronomical AO systems[C]Proceedings of SPIE, 2014, 9148: 914818.
[13] Guo H, Cheng Y, Chen L, et al. The perfmance of wave infrared HgCdTe eavalanche photodiodes at SITP[C] Fourteenth National Conference on Laser Technology Optoelectronics, 2019.
[14] J Rothman. Physics and limitations of HgCdTe APDs: A review. Journal of Electronic Materials, 47, 5657-5665(2018).
[15] Parahyba V E S, Bniol E D, Perrier R, et al. Timeofflight calibration of an MCTAPD sens f a flash imaging LiDAR system[C]Proceedings of SPIE, 2018, 11180: 111802K.
[18] J Beck, C Wan, M Kinch, et al. The HgCdTe electron avalanche photodiode. Journal of Electronic Materials, 35, 1166-1173(2006).
[19] Krainak M A, Sun X, Yang G, et al. Photon detects with large dynamic range at nearinfrared wavelength f direct detection space lidars[C]Proceedings of SPIE, 2009, 7320: 732005.
[20] National Research Council. Laser Radar: Progress Opptunities in Active ElectroOptical Sensing[M]. Washington: The National Academies Press, 2014.
[21] J D Beck, R Scritchfield, P Mitra, et al. Linear mode photon counting with the noiseless gain HgCdTe e-APD. Optical Engineering, 53, 081905(2011).
[22] Bai X, Ping Y, Mcdonald P, et al. 16 channel GHz low noise SWIR photeceivers[C]Proceedings of SPIE, 2012, 8353:83532E.
[23] Baker I, Thne P, Henderson J, et al. Advanced multifunctional detects f lasergated imaging applications[C]Proceedings of SPIE, 2006, 6206: 620608.
[24] Baker I, Owton D, Trundle K, et al. Advanced infrared detects f multimode active passive imaging applications[C]Proceedings of SPIE, 2008, 6940: 69402L.
[25] Bniol E D , Guellec F , Rothman J, et al. HgCdTebased APD focal plane array f 2D 3D active imaging: First results on a 320×256 with 30 µm pitch demonstrato[C]Proceedings of SPIE, 2010, 7660: 76603D.
[26] McManamon Paul. Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology. Optical Engineering, 51, 060901(2012).
[27] Lake K, Isgar V, Baker I, et al. Developments in theSAPHIRA family of HgCdTe APD infrared arrays f low flux sensing: present future[C]Proceedings of SPIE, 2020, 11530: 115300H.
[28] S B Goebel, N B Donald, O Guyon, et al. Overview of the SAPHIRA detector for adaptive optics applications. Journal of Astronomical Telescopes, Instruments, and Systems, 4, 026001(2018).