• Photonics Research
  • Vol. 10, Issue 9, 2229 (2022)
Jiabing Lu1, Zesheng Lv1, Xinjia Qiu1, Shiquan Lai1, and Hao Jiang1、2、3、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
  • 3Guangdong Engineering Technology R & D Center of Compound Semiconductors and Devices, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.467689 Cite this Article Set citation alerts
    Jiabing Lu, Zesheng Lv, Xinjia Qiu, Shiquan Lai, Hao Jiang. Ultrasensitive and high-speed AlGaN/AlN solar-blind ultraviolet photodetector: a full-channel-self-depleted phototransistor by a virtual photogate[J]. Photonics Research, 2022, 10(9): 2229 Copy Citation Text show less
    References

    [1] C. Xie, X. T. Lu, X. W. Tong, Z. X. Zhang, F. X. Liang, L. Liang, L. B. Luo, Y. C. Wu. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater., 29, 1806006(2019).

    [2] Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, R. Zhang. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl., 10, 94(2021).

    [3] U. Varshney, N. Aggarwal, G. Gupta. Current advances in solar-blind photodetection technology: using Ga2O3 and AlGaN. J. Mater. Chem. C, 10, 1573-1593(2022).

    [4] A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki. Demonstration of flame detection in room light background by solar-blind AlGaN PIN photodiode. Phys. Status Solidi A, 188, 293-296(2001).

    [5] C. Coetzer, S. Groenewald, W. Leuschner. An analysis of the method for determining the lowest sensitivity of solar-blind ultraviolet corona cameras. International SAUPEC/RobMech/PRASA Conference, 1-6(2020).

    [6] Z. Xu, B. M. Sadler. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag., 46, 67-73(2008).

    [7] H. Wu, W. Wu, H. Zhang, Y. Chen, Z. Wu, G. Wang, H. Jiang. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl. Phys. Express, 9, 052103(2016).

    [8] B. Liu, D. Chen, H. Lu, T. Tao, Z. Zhuang, Z. Shao, W. Xu, H. Ge, T. Zhi, F. Ren, J. Ye, Z. Xie, R. Zhang. Hybrid light emitters and UV solar-blind avalanche photodiodes based on III-nitride semiconductors. Adv. Mater., 32, 1904354(2020).

    [9] A. Yoshikawa, Y. Yamamoto, T. Murase, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. High-photosensitivity AlGaN-based UV heterostructure-field-effect-transistor-type photosensors. Jpn. J. Appl. Phys., 55, 05FJ04(2016).

    [10] K. Wang, X. Qiu, Z. Lv, Z. Song, H. Jiang. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect. Photon. Res., 10, 111-119(2021).

    [11] Y. Liu, L. Du, G. Liang, W. Mu, Z. Jia, M. Xu, Q. Xin, X. Tao, A. Song. Ga2O3 field-effect-transistor-based solar-blind photodetector with fast response and high photo-to-dark current ratio. IEEE Electron Device Lett., 39, 1696-1699(2018).

    [12] C. Chen, X. Zhao, X. Hou, S. Yu, R. Chen, X. Zhou, P. Tan, Q. Liu, W. Mu, Z. Jia, G. Xu, X. Tao, S. Long. High-performance β-Ga2O3 solar-blind photodetector with extremely low working voltage. IEEE Electron Device Lett., 42, 1492-1495(2021).

    [13] M. I. Pintor-Monroy, M. G. Reyes-Banda, C. Avila-Avendano, M. A. Quevedo-Lopez. Tuning electrical properties of amorphous Ga2O3 thin films for deep UV phototransistors. IEEE Sens. J., 21, 14807-14814(2021).

    [14] X. Sun, Z. Wang, H. Gong, X. Chen, Y. Zhang, Z. Wang, X. Yu, F. Ren, H. Lu, S. Gu, Y. Zheng, R. Zhang, J. Ye. M-plane α-Ga2O3 solar-blind detector with record-high responsivity-bandwidth product and high-temperature operation capability. IEEE Electron Device Lett., 43, 541-544(2022).

    [15] P. Reddy, M. Hayden Breckenridge, Q. Guo, A. Klump, D. Khachariya, S. Pavlidis, W. Mecouch, S. Mita, B. Moody, J. Tweedie, R. Kirste, E. Kohn, R. Collazo, Z. Sitar. High gain, large area, and solar blind avalanche photodiodes based on Al-rich AlGaN grown on AlN substrates. Appl. Phys. Lett., 116, 081101(2020).

    [16] Z. Shao, H. Yu, Y.-S. Liu, X. Yang, D. Chen, B. Liu, H. Lu, R. Zhang, Y. Zheng. Different I-V behaviors and leakage current mechanisms in AlGaN solar-blind ultraviolet avalanche photodiodes. ACS Appl. Electron. Mater., 2, 2716-2720(2020).

    [17] L. Zhang, S. Tang, C. Liu, B. Li, H. Wu, H. Wang, Z. Wu, H. Jiang. Demonstration of solar-blind AlxGa1−xN-based heterojunction phototransistors. Appl. Phys. Lett., 107, 233501(2015).

    [18] D. Chen, D. Li, G. Zeng, F. C. Hu, Y. C. Li, Y. C. Chen, X. X. Li, J. Tang, C. Shen, N. Chi, D. W. Zhang, H. L. Lu. GaN-based micro-light-emitting diode driven by a monolithic integrated ultraviolet phototransistor. IEEE Electron Device Lett., 43, 80-83(2022).

    [19] A. M. Armstrong, B. Klein, A. A. Allerman, E. A. Douglas, A. G. Baca, M. H. Crawford, G. W. Pickrell, C. A. Sanchez. Visible-blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors. J. Appl. Phys., 123, 114502(2018).

    [20] J. Z. Li, J. Y. Lin, H. X. Jiang, M. Asif Khan, Q. Chen. Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys., 82, 1227-1230(1997).

    [21] C. Wood, D. Jena. Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications(2007).

    [22] F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B, 56, R10024(1997).

    [23] O. Ambacher, R. Dimitrov, M. Stutzmann, B. E. Foutz, M. J. Murphy, J. A. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Chumbes, B. Green, A. J. Sierakowski, W. J. Schaff, L. F. Eastman. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. Phys. Status Solidi B, 216, 381-389(1999).

    [24] C. X. Ren. Polarisation fields in III-nitrides: effects and control. Mater. Sci. Technol., 32, 418-433(2016).

    [25] Z. Li, P. Shao, Y. Wu, G. Shi, T. Tao, Z. Xie, P. Chen, Y. Zhou, X. Xiu, D. Chen, B. Liu, K. Wang, Y. Zheng, R. Zhang, T. Lin, L. Wang, H. Hirayama. Plasma assisted molecular beam epitaxy growth mechanism of AlGaN epilayers and strain relaxation on AlN templates. Jpn. J. Appl. Phys., 60, 075504(2021).

    [26] J. D. Wei, S. F. Li, A. Atamuratov, H. H. Wehmann, A. Waag. Photoassisted Kelvin probe force microscopy at GaN surfaces: the role of polarity. Appl. Phys. Lett., 97, 172111(2010).

    [27] S. M. Sze, K. K. Ng. Physics of Semiconductor Devices(2007).

    [28] V. S. N. Chava, B. G. Barker, A. Balachandran, A. Khan, G. Simin, A. B. Greytak, M. V. S. Chandrashekhar. High detectivity visible-blind SiF4 grown epitaxial graphene/SiC Schottky contact bipolar phototransistor. Appl. Phys. Lett., 111, 243504(2017).

    [29] J. He, H. Liu, C. Huang, Y. Jia, K. Li, A. Mesli, R. Yang, Y. He, Y. Dan. Analytical transient responses and gain-bandwidth products of low-dimensional high-gain photodetectors. ACS Nano, 15, 20242-20252(2021).

    [30] B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, B. M. Onat. Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm. IEEE Photon. Technol. Lett., 23, 218-220(2011).

    [31] Z. Lv, Y. Guo, S. Zhang, Q. Wen, H. Jiang. Polarization engineered InGaN/GaN visible-light photodiodes featuring high responsivity, bandpass response, and high speed. J. Mater. Chem. C, 9, 12273-12280(2021).

    [32] S. Rathkanthiwar, A. Kalra, S. V. Solanke, N. Mohta, R. Muralidharan, S. Raghavan, D. N. Nath. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J. Appl. Phys., 121, 164502(2017).

    [33] D. A. Neamen. Semiconductor Physics and Devices: Basic Principles(2003).

    [34] Y. Taniyasu, M. Kasu. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett., 99, 251112(2011).

    [35] X. Chen, Y. Xu, D. Zhou, S. Yang, F.-F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, J. Ye. Solar-Blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl. Mater. Interfaces, 9, 36997-37005(2017).

    [36] Z. Z. Bandić, P. M. Bridger, E. C. Piquette, T. C. McGill. Minority carrier diffusion length and lifetime in GaN. Appl. Phys. Lett., 72, 3166-3168(1998).

    [37] W. E, M. Li, D. Meng, Y. Cheng, W. Fu, P. Ye, Y. He. High-performance amorphous BeZnO-alloy-based solar-blind ultraviolet photodetectors on rigid and flexible substrates. J. Alloys Compd., 831, 154819(2020).

    [38] M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, D. Z. Shen. High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film. Appl. Phys. Lett., 105, 011117(2014).

    [39] H. Wang, H. Chen, L. Li, Y. Wang, L. Su, W. Bian, B. Li, X. Fang. High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT:PSS/β-Ga2O3 organic/inorganic p-n junction. J. Phys. Chem. Lett., 10, 6850-6856(2019).

    [40] Y. Qin, L. Li, X. Zhao, G. S. Tompa, H. Dong, G. Jian, Q. He, P. Tan, X. Hou, Z. Zhang, S. Yu, H. Sun, G. Xu, X. Miao, K. Xue, S. Long, M. Liu. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photon., 7, 812-820(2020).

    [41] Y. Qin, H. Dong, S. Long, Q. He, G. Jian, Y. Zhang, X. Zhou, Y. Yu, X. Hou, P. Tan, Z. Zhang, Q. Liu, H. Lv, M. Liu. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect solar-blind phototransistor with ultrahigh detectivity and photo-to-dark current ratio. IEEE Electron Device Lett., 40, 742-745(2019).

    [42] S. Yu, X. Zhao, M. Ding, P. Tan, X. Hou, Z. Zhang, W. Mu, Z. Jia, X. Tao, G. Xu, S. Long. High-detectivity β-Ga2O3 microflake solar-blind phototransistor for weak light detection. IEEE Electron Device Lett., 42, 383-386(2021).

    [43] A. Kalra, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, D. N. Nath. Polarization-graded AlGaN solar-blind p-i-n detector with 92% zero-bias external quantum efficiency. IEEE Photon. Technol. Lett., 31, 1237-1240(2019).

    [44] V. Adivarahan, G. Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. A. Khan, M. S. Shur, R. Gaska. Indium-silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl. Phys. Lett., 79, 1903-1905(2001).

    [45] A. Yoshikawa, S. Ushida, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. Influence of trap level on an Al0.6Ga0.4N/Al0.5Ga0.5N metal-semiconductor-metal UV photodetector. Jpn. J. Appl. Phys., 58, SCCC26(2019).

    [46] Q. Wen, C. Wang, X. Qiu, Z. Lv, H. Jiang. Significant performance improvement of AlGaN solar-blind heterojunction phototransistors by using Na2S solution based surface treatment. Appl. Surf. Sci., 591, 153144(2022).

    [47] T. Tut, M. Gokkavas, A. Inal, E. Ozbay. AlxGa1−xN-based avalanche photodiodes with high reproducible avalanche gain. Appl. Phys. Lett., 90, 163506(2007).

    Jiabing Lu, Zesheng Lv, Xinjia Qiu, Shiquan Lai, Hao Jiang. Ultrasensitive and high-speed AlGaN/AlN solar-blind ultraviolet photodetector: a full-channel-self-depleted phototransistor by a virtual photogate[J]. Photonics Research, 2022, 10(9): 2229
    Download Citation