• Acta Optica Sinica
  • Vol. 40, Issue 22, 2230001 (2020)
Chipeng Cao1, Huiqin Wang1、*, Ke Wang1, Zhan Wang2, Gang Zhang2, and Tao Ma2
Author Affiliations
  • 1School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • 2Shanxi Provincial Institute of Cultural Relics Protection, Xi'an, Shaanxi 710075, China
  • show less
    DOI: 10.3788/AOS202040.2230001 Cite this Article Set citation alerts
    Chipeng Cao, Huiqin Wang, Ke Wang, Zhan Wang, Gang Zhang, Tao Ma. Intelligent Evaluation Method of Grottoes Surface Weathering Based on Multispectral Imaging and Random Forest Algorithm[J]. Acta Optica Sinica, 2020, 40(22): 2230001 Copy Citation Text show less
    References

    [1] Chai B L, Su B M, Zhang W Y et al. Standard multispectral image database for paint materials used in the Dunhuang murals[J]. Spectroscopy and Spectral Analysis, 37, 3289-3306(2017).

    [2] Liu R Z, Zhang B J, Zhang H et al. Deterioration of Yungang grottoes: diagnosis and research[J]. Journal of Cultural Heritage, 12, 494-499(2011).

    [3] Bruthans J, Filippi M, Schweigstillová J et al. Quantitative study of a rapidly weathering overhang developed in an artificially wetted sandstone cliff[J]. Earth Surface Processes and Landforms, 42, 711-723(2017).

    [4] Qin Y, Wang Y H, Li L L et al. Experimental weathering of weak sandstone without direct water participation by using sandstone from the Yungang grottoes in Datong, China[J]. Rock Mechanics and Rock Engineering, 49, 4473-4478(2016).

    [5] McAllister D, Warke P, McCabe S. Stone temperature and moisture variability under temperate environmental conditions: implications for sandstone weathering[J]. Geomorphology, 280, 137-152(2017).

    [6] Chen W W, Liao R X, Wang N et al. Effects of experimental frost-thaw cycles on sandstones with different weathering degrees: a case from the Bingling Temple Grottoes, China[J]. Bulletin of Engineering Geology and the Environment, 78, 5311-5326(2019).

    [7] Ling X, Wu M L, Liao Y et al. Nondestructive techniques in the research and preservation of cultural relics[J]. Spectroscopy and Spectral Analysis, 38, 2026-2031(2018).

    [8] Liu S, Tan X, Liu C Y et al. Recognition of fusarium head blight wheat grain based on hyperspectral data processing algorithm[J]. Spectroscopy and Spectral Analysis, 39, 3540-3546(2019).

    [9] Xi Z H, Hou C Y, Yuan K P et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 39, 0210003(2019).

    [10] Ma H Q, Ma S P, Xu Y L et al. Low-light image enhancement based on deep convolutional neural network[J]. Acta Optica Sinica, 39, 0210004(2019).

    [11] Wu Z H, Gao Y M, Li L et al. Fully convolutional network method of semantic segmentation of class imbalance remote sensing images[J]. Acta Optica Sinica, 39, 0428004(2019).

    [12] Zhang H K, Li Y, Jiang Y N. Deep learning for hyperspectral imagery classification: the state of the art and prospects[J]. Acta Automatica Sinica, 44, 961-977(2018).

    [13] Wu J F, Jiang Z G, Zhang H P et al. Hyperspectral remote sensing image classification based on semi-supervised conditional random field[J]. Journal of Remote Sensing, 21, 588-603(2017).

    [14] Cao X H, Li R J, Ge Y M et al. Densely connected deep random forest for hyperspectral imagery classification[J]. International Journal of Remote Sensing, 40, 3606-3622(2019).

    [15] Scott G J, England M R, Starms W A et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery[J]. IEEE Geoscience and Remote Sensing Letters, 14, 549-553(2017).

    [16] Du P J, Xia J S, Xue Z H et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 20, 236-256(2016).

    [17] Cen Y, Zhang G Z, Zhang L F et al. Spectral uncertainty of terrestrial objects and the applicability of spectral angle mapper algorithm[J]. Spectroscopy and Spectral Analysis, 35, 2841-2845(2015).

    [18] Cai J X, Feng G C, Tang X et al. Human action recognition based on local image contour and random forest[J]. Acta Optica Sinica, 34, 1015006(2014).

    [19] Fang X R, Wen Z F, Chen J L et al. Remote sensing estimation of suspended sediment concentration based on random forest regression model[J]. Journal of Remote Sensing, 23, 756-772(2019).

    [20] Wang M, Zhang X C, Wang J Y et al. Forest resource classification based on random forest and object oriented method[J]. Acta Geodaetica et Cartographica Sinica, 49, 235-244(2020).

    [21] Xu C B, Qiu J T, Zhong Q L et al. Reflectance spectroscopy applied in sandstone weathering and nitrogen excretion: a case study in Longhushan mountain, Jiangxi Province[J]. Spectroscopy and Spectral Analysis, 39, 3801-3808(2019).

    [22] Jiang X D, Cao J J, Li Y A et al. Application of near-infrared spectrum technology to research of weathering of red sandstone relics[J]. Spectroscopy and Spectral Analysis, 31, 2102-2105(2011).

    [23] Skurichina M. Duin R P W. Bagging, boosting and the random subspace method for linear classifiers[J]. Pattern Analysis & Applications, 5, 121-135(2002).

    [24] Breiman L. Random forests[J]. Machine Learning, 45, 5-32(2001).

    [25] Zhang Z Q, Zhang X C, Xin Q C et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 47, 102-112(2018).

    [26] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 5, 3-55(2001).

    [27] Yuan B, Hu B. Band selection algorithm for hyperspectral remote sensing with relative entropy and mutual information[J]. Remote Sensing Information, 34, 33-38(2019).

    Chipeng Cao, Huiqin Wang, Ke Wang, Zhan Wang, Gang Zhang, Tao Ma. Intelligent Evaluation Method of Grottoes Surface Weathering Based on Multispectral Imaging and Random Forest Algorithm[J]. Acta Optica Sinica, 2020, 40(22): 2230001
    Download Citation