• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0114006 (2024)
Chao Luo1、†, Lilin Yi†、*, and Guoqing Pu
Author Affiliations
  • State Key Lab of Advanced Communication Systems and Networks, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP232568 Cite this Article Set citation alerts
    Chao Luo, Lilin Yi, Guoqing Pu. Intelligent Technologies Enhancing Femtosecond Lasers: Characterization and Control (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114006 Copy Citation Text show less
    References

    [1] Redlich M J, Prall B, Canto-Said E et al. High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser[J]. Scientific Reports, 11, 7950(2021).

    [2] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 7, 875-882(2013).

    [3] Nemitz N, Ohkubo T, Takamoto M et al. Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time[J]. Nature Photonics, 10, 258-261(2016).

    [4] Bloom B J, Nicholson T L, Williams J R et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 506, 71-75(2014).

    [5] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [6] Ghelfi P, Laghezza F, Scotti F et al. A fully photonics-based coherent radar system[J]. Nature, 507, 341-345(2014).

    [7] Jiang Y S, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera[J]. Nature Photonics, 14, 14-18(2020).

    [8] Liu X Q, Zhang Y L, Li Q K et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 3, 1-13(2022).

    [9] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [10] Li C H, Benedick A J, Fendel P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1[J]. Nature, 452, 610-612(2008).

    [11] Weber H P. Method for pulsewidth measurement of ultrashort light pulses generated by phase & hyphen; Locked lasers using nonlinear optics[J]. Journal of Applied Physics, 38, 2231-2234(1967).

    [12] Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating[J]. Optics Letters, 18, 823-825(1993).

    [13] Iaconis C, Walmsley I A. Self-referencing spectral interferometry for measuring ultrashort optical pulses[J]. IEEE Journal of Quantum Electronics, 35, 501-509(1999).

    [14] Ryczkowski P, Närhi M, Billet C et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser[J]. Nature Photonics, 12, 221-227(2018).

    [15] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).

    [16] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 8, 465-540(2016).

    [17] Zhang X, Hu H Y, Li W B et al. High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking[J]. Applied Optics, 55, 7885-7891(2016).

    [18] Fu W, Wright L G, Sidorenko P et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 26, 9432-9463(2018).

    [19] Meng Y C, Salhi M, Niang A et al. Mode-locked Er: Yb-doped double-clad fiber laser with 75-nm tuning range[J]. Optics Letters, 40, 1153-1156(2015).

    [20] Kang M S, Joly N Y, Russell P J,. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances[J]. Optics Letters, 38, 561-563(2013).

    [21] Amrani F, Haboucha A, Salhi M et al. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic[J]. Optics Letters, 34, 2120-2122(2009).

    [22] Wang S, Wang Y B, Feng G Y et al. Harmonically mode-locked Yb: CALGO laser pumped by a single-mode 12 W laser diode[J]. Optics Express, 26, 1521-1529(2018).

    [23] Zhang Z X, Mou C B, Yan Z J et al. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating[J]. Optics Express, 23, 1353-1360(2015).

    [24] Chen Y, Jiang G B, Chen S Q et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 23, 12823-12833(2015).

    [25] Kong L C, Xie G Q, Yuan P et al. Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm: CLNGG laser with MoS2 saturable absorber mirror[J]. Photonics Research, 3, A47-A50(2015).

    [26] DeMaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 8, 174-176(1966).

    [27] Sun S Q, Lin Z X, Li W et al. Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser[J]. Optics Express, 26, 20888-20901(2018).

    [28] Lapre C, Billet C, Meng F C et al. Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics[J]. Scientific Reports, 9, 13950(2019).

    [29] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).

    [30] Liu X M, Yao X K, Cui Y D. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 121, 023905(2018).

    [31] Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2, 36-39(2015).

    [32] Herink G, Jalali B, Ropers C et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 10, 321-326(2016).

    [33] Imai M, Terasawa Y, Ohtsuka Y. Polarization fluctuation characteristics of a highly birefringent fiber system under forced vibration[J]. Journal of Lightwave Technology, 6, 720-727(1988).

    [34] Namihira Y, Wakabayashi H. Real-time measurements of polarization fluctuations in an optical fiber submarine cable in a deep-sea trial using electrooptic LiNbO3 device[J]. Journal of Lightwave Technology, 7, 1201-1206(1989).

    [35] Waddy D S, Lu P, Chen L et al. Fast state of polarization changes in aerial fiber under different climatic conditions[J]. IEEE Photonics Technology Letters, 13, 1035-1037(2001).

    [36] Wuttke J, Krummrich P M, Rosch J. Polarization oscillations in aerial fiber caused by wind and power-line current[J]. IEEE Photonics Technology Letters, 15, 882-884(2003).

    [37] Willner A E, Nezam S M R M, Yan L et al. Monitoring and control of polarization-related impairments in optical fiber systems[J]. Journal of Lightwave Technology, 22, 106-125(2004).

    [38] Waddy D S, Chen L, Bao X Y. Polarization effects in aerial fibers[J]. Optical Fiber Technology, 11, 1-19(2005).

    [39] Woodward S L, Nelson L E, Schneider C R et al. Long-term observation of PMD and SOP on installed fiber routes[J]. IEEE Photonics Technology Letters, 26, 213-216(2014).

    [40] Dudley J M, Genty G, Mussot A et al. Rogue waves and analogies in optics and oceanography[J]. Nature Reviews Physics, 1, 675-689(2019).

    [41] Namiki S, Ippen E P, Haus H A et al. Energy rate equations for mode-locked lasers[J]. Journal of the Optical Society of America B, 14, 2099-2111(1997).

    [42] Bale B G, Kieu K, Kutz J N et al. Transition dynamics for multi-pulsing in mode-locked lasers[J]. Optics Express, 17, 23137-23146(2009).

    [43] Li F, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities[J]. Journal of the Optical Society of America B, 27, 2068-2077(2010).

    [44] Zahavy T, Dikopoltsev A, Moss D et al. Deep learning reconstruction of ultrashort pulses[J]. Optica, 5, 666-673(2018).

    [45] Kokhanovskiy A, Bednyakova A, Kuprikov E et al. Machine learning-based pulse characterization in figure-eight mode-locked lasers[J]. Optics Letters, 44, 3410-3413(2019).

    [46] Stanfield M, Ott J, Gardner C et al. Real-time reconstruction of high energy, ultrafast laser pulses using deep learning[J]. Scientific Reports, 12, 5299(2022).

    [47] Fan C X, Pu G Q, Hu W S et al. Single-shot characterization of femtosecond pulses by a residual network[C], 1744-1746(2023).

    [48] Kuang Q, Shen X, Xu Y L et al. Dense-1D-U-net: encoder-decoder networks for self-referenced spectral interferometry[J]. Chinese Journal of Lasers, 49, 0904002(2022).

    [49] Chen J B, Wang M, Xia W. Neural-network-assisted femtosecond laser pulse duration measurement using two-photon absorption[J]. Chinese Optics Letters, 18, 121901(2020).

    [50] Geffert O, Kolbasova D, Trabattoni A et al. In situ characterization of few-femtosecond laser pulses by learning from first-principles calculations[J]. Optics Letters, 47, 3992-3995(2022).

    [51] Hellwig T, Walbaum T, Groß P et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Applied Physics B, 101, 565-570(2010).

    [52] Shen X L, Li W X, Yan M et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 37, 3426-3428(2012).

    [53] Li S, Xu J, Chen G L et al. An automatic mode-locked system for passively mode-locked fiber laser[J]. Proceedings of SPIE, 9043, 904313(2013).

    [54] Shen X L, Hao Q, Zeng H P. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings[J]. IEEE Photonics Technology Letters, 29, 1719-1722(2017).

    [55] Pu G Q, Yi L L, Zhang L et al. Programmable and fast-switchable passively harmonic mode-locking fiber laser[C], W2A.9(2018).

    [56] Wu H H, Huang P H, Teng Y H et al. Automatic generation of noise-like or mode-locked pulses in an ytterbium-doped fiber laser by using two-photon-induced current for feedback[J]. IEEE Photonics Journal, 10, 1-8(2018).

    [57] Fu X, Kutz J N. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm[J]. Optics Express, 21, 6526-6537(2013).

    [58] Andral U, Fodil R S, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275-278(2015).

    [59] Woodward R I, Kelleher E J R. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 6, 37616(2016).

    [60] Winters D G, Kirchner M S, Backus S J et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Optics Express, 25, 33216-33225(2017).

    [61] Ryser M, Bacher C, Lätt C et al. Self-optimizing additive pulse mode-locked fiber laser: wavelength tuning and selective operation in continuous-wave or mode-locked regime[J]. Proceedings of SPIE, 10512, 105121C(2018).

    [62] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).

    [63] Pu G Q, Yi L L, Zhang L et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 32, 7-10(2020).

    [64] Pu G Q, Yi L L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light: Science & Applications, 9, 13(2020).

    [65] Girardot J, Billard F, Coillet A et al. Autosetting mode-locked laser using an evolutionary algorithm and time-stretch spectral characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1100108(2020).

    [66] Luo C, Pu G Q, Hu W S et al. High-repetition-rate real-time automatic mode-locked fibre laser enabled by a pre-stretch technique[J]. IEEE Photonics Technology Letters, 34, 791-794(2022).

    [67] Ma Q Y, Yu H Y, Zhou Q et al. A mode-locked fiber laser simulation platform for self-tuning algorithm optimization[J]. Proceedings of SPIE, 12314, 123140Y(2022).

    [68] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Optics Letters, 42, 2952-2955(2017).

    [69] Brunton S L, Fu X, Kutz J N. Extremum-seeking control of a mode-locked laser[J]. IEEE Journal of Quantum Electronics, 49, 852-861(2013).

    [70] Fu X, Brunton S L, Kutz J N. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation[J]. Optics Express, 22, 8585-8597(2014).

    [71] Brunton S L, Fu X, Kutz J N. Self-tuning fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 464-471(2014).

    [72] Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 35, 617-626(2018).

    [73] Yan Q Q, Deng Q H, Zhang J et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 9, 1493(2021).

    [74] Li Z, Yang S S, Xiao Q et al. Deep reinforcement with spectrum series learning control for a mode-locked fiber laser[J]. Photonics Research, 10, 1491(2022).

    [75] Sun J X, Liu Z, Shu Y Q et al. Reproduction of mode-locked pulses by spectrotemporal domain-informed deep learning[J]. Optics Express, 31, 34100-34111(2023).

    [76] Wu X Q, Peng J S, Boscolo S et al. Intelligent breathing soliton generation in ultrafast fiber lasers[J]. Laser & Photonics Reviews, 16, 2100191(2022).

    [77] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 9, 149(2020).

    [78] Liu S L, Cui Y D, Karimi E et al. On-demand harnessing of photonic soliton molecules[J]. Optica, 9, 240-250(2022).

    [79] Girardot J, Coillet A, Nafa M et al. On-demand generation of soliton molecules through evolutionary algorithm optimization[J]. Optics Letters, 47, 134-137(2021).

    [80] Liu Y S, Huang S Y, Li Z L et al. Phase-tailored assembly and encoding of dissipative soliton molecules[J]. Light: Science & Applications, 12, 123(2023).

    [81] Pu G Q, Liu R M, Luo C et al. Intelligent single-cavity dual-comb source with fast locking[J]. Journal of Lightwave Technology, 41, 593-598(2023).

    [82] Yi L L, Luo C, Pu G Q et al. Real-time comprehensive control over soliton molecules[EB/OL]. https://doi.org/10.21203/rs.3.rs-3258413/v1

    [83] Feehan J S, Yoffe S R, Brunetti E et al. Computer-automated design of mode-locked fiber lasers[J]. Optics Express, 30, 3455-3473(2022).

    [84] Lucas E, Yu S P, Briles T C et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators[J]. Nature Photonics, 17, 943-950(2023).

    [85] Krumbügel M A, Ladera C L, DeLong K W et al. Direct ultrashort-pulse intensity and phase retrieval by frequency-resolved optical gating and a computational neural network[J]. Optics Letters, 21, 143-145(1996).

    [86] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).

    [87] Radnatarov D, Khripunov S, Kobtsev S et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution[J]. Optics Express, 21, 20626-20631(2013).

    [88] Olivier M, Gagnon M D, Piché M. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state[J]. Optics Express, 23, 6738-6746(2015).

    [89] Holland J H. Genetic algorithms[J]. Scientific American, 267, 66-72(1992).

    [90] Bhushan A S, Coppinger F, Jalali B. Time-stretched analogue-to-digital conversion[J]. Electronics Letters, 34, 839-841(1998).

    [91] Mahjoubfar A, Churkin D V, Barland S et al. Time stretch and its applications[J]. Nature Photonics, 11, 341-351(2017).

    [92] Goodfellow I, Bengio Y, Courville A[J]. Deep learning(2016).

    [93] García C E, Prett D M, Morari M. Model predictive control: theory and practice: a survey[J]. Automatica, 25, 335-348(1989).

    [94] Sobon G, Sotor J, Abramski K M. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber[J]. Laser Physics Letters, 9, 581-586(2012).

    [95] Szczepanek J, Kardaś T M, Radzewicz C et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 42, 575-578(2017).

    [96] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [97] Carpenter J, Eggleton B J, Schröder J. Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre[J]. Nature Photonics, 9, 751-757(2015).

    [98] Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres[J]. Nature Photonics, 9, 529-535(2015).

    [99] Xiong W, Ambichl P, Bromberg Y et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling[J]. Physical Review Letters, 117, 053901(2016).

    [100] Tzang O, Caravaca-Aguirre A M, Wagner K et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres[J]. Nature Photonics, 12, 368-374(2018).

    [101] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 358, 94-97(2017).

    [102] Nimmesgern L, Beckh C, Kempf H et al. Soliton molecules in femtosecond fiber lasers: universal binding mechanism and direct electronic control[J]. Optica, 8, 1334-1339(2021).

    [103] Wu X Q, Zhang Y, Peng J S et al. Control of spectral extreme events in ultrafast fiber lasers by a genetic algorithm[J/OL]. Laser & Photonics Reviews, 1-11. https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202200470

    [104] Salmela L, Hary M, Mabed M et al. Feed-forward neural network as nonlinear dynamics integrator for supercontinuum generation[J]. Optics Letters, 47, 802-805(2022).

    [105] Salmela L, Tsipinakis N, Foi A et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 344-354(2021).

    [106] Pu G Q, Liu R M, Yang H et al. Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding[J]. Laser & Photonics Reviews, 17, 2200363(2023).

    [107] Yang H, Zhao H C, Niu Z K et al. Low-complexity full-field ultrafast nonlinear dynamics prediction by a convolutional feature separation modeling method[J]. Optics Express, 30, 43691-43705(2022).

    [108] Chu T, Pu G Q, Yang H et al. AI-enabled fast and accurate modeling for femtosecond chirped-pulse amplification[C], 1899-1902(2023).

    [109] Wu X Q, Peng J S, Zhang Y et al. Principles and research advances of intelligent mode-locked fiber lasers[J]. Chinese Journal of Lasers, 50, 1101006(2023).

    [110] Wu H S, Jiang M, Zhou P. Artificial intelligence-assisted laser science and technology: status, opportunities, and challenges[J]. Chinese Journal of Lasers, 50, 1101001(2023).

    Chao Luo, Lilin Yi, Guoqing Pu. Intelligent Technologies Enhancing Femtosecond Lasers: Characterization and Control (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114006
    Download Citation