• Photonics Research
  • Vol. 5, Issue 3, 187 (2017)
Jinghuan Yang1、2, Quan Sun2, Han Yu2, Kosei Ueno2, Hiroaki Misawa2、3、5、*, and Qihuang Gong1、4、6、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
  • 2Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
  • 3Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
  • 4Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 5e-mail: misawa@es.hokudai.ac.jp
  • 6e-mail: qhgong@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.5.000187 Cite this Article Set citation alerts
    Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, Qihuang Gong. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187 Copy Citation Text show less
    References

    [1] S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, B. Lee. Plasmonic meta-slit: shaping and controlling near-field focus. Optica, 2, 6-13(2015).

    [2] H. Linnenbank, S. Linden. Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials. Optica, 2, 698-701(2015).

    [3] H. W. Jia, F. Yang, Y. Zhong, H. T. Liu. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas. Photon. Res., 4, 293-305(2016).

    [4] R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, S. Blaize. Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires. Photon. Res., 2, 24-30(2014).

    [5] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [6] G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, A. Chilkoti. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano, 3, 795-806(2009).

    [7] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett., 10, 1501-1505(2010).

    [8] K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, H. Misawa. Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles. J. Phys. Chem. Lett., 7, 1004-1009(2016).

    [9] X. Shi, K. Ueno, T. Oshikiri, H. Misawa. Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film. J. Phys. Chem. C, 117, 24733-24739(2013).

    [10] Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 127, 7632-7637(2005).

    [11] Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, P. Wang. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett., 13, 14-20(2013).

    [12] T. Oshikiri, K. Ueno, H. Misawa. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed., 53, 9802-9805(2014).

    [13] T. Oshikiri, K. Ueno, H. Misawa. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed., 55, 3942-3946(2016).

    [14] Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, H. Misawa. Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed., 53, 10350-10354(2014).

    [15] R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett., 8, 3155-3159(2008).

    [16] Y. Nishiyama, K. Imura, H. Okamoto. Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques. Nano Lett., 15, 7657-7665(2015).

    [17] D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, V. V. Moshchalkov. Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano, 7, 3168-3176(2013).

    [18] M. Frimmer, T. Coenen, A. F. Koenderink. Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states. Phys. Rev. Lett., 108, 077404(2012).

    [19] T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, M. L. Brongersma. Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system. Nano Lett., 15, 7666-7670(2015).

    [20] D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett., 11, 1499-1504(2011).

    [21] V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, F. J. G. de Abajo. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Nano Lett., 12, 4172-4180(2012).

    [22] J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, J. Plain. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Nano Lett., 14, 5517-5523(2014).

    [23] S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, P. Mulvaney. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy. Nano Lett., 14, 3799-3808(2014).

    [24] Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, H. Misawa. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light Sci. Appl., 2, e118(2013).

    [25] Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835-3842(2016).

    [26] F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, G. Schonhense. Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett., 12, 1885-1890(2012).

    [27] P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, M. Aeschlimann. Optical near-field interference in the excitation of a bowtie nanoantenna. Phys. Rev. B, 83, 235407(2011).

    [28] P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, M. Aeschlimann. Photoelectron imaging of modal interference in plasmonic whispering gallery cavities. Opt. Express, 23, 31619-31626(2015).

    [29] M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, M. Kreiter. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett., 95, 047601(2005).

    [30] B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, J. Q. Lin. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures. New J. Phys., 18, 093046(2016).

    [31] H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, H. Misawa. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano, 10, 10373-10381(2016).

    [32] A. B. Evlyukhin, C. Reinhardt, U. Zywietz, B. N. Chichkov. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B, 85, 245411(2012).

    [33] O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, P. A. Midgley. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature, 502, 80-84(2013).

    [34] F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander. Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett., 458, 262-266(2008).

    [35] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [36] J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, L. M. Liz-Marzan. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 22, 7007-7010(2006).

    [37] J. D. Jackson. Classical Electrodynamics(1999).

    [38] H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, N. J. Halas. Symmetry breaking in individual plasmonic nanoparticles. Proc. Natl. Acad. Sci. USA, 103, 10856-10860(2006).

    [39] Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, S. H. Chang. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano, 6, 3390-3396(2012).

    [40] K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa. Spectrally-resolved atomic-scale length variations of gold nanorods. J. Am. Chem. Soc., 128, 14226-14227(2006).

    [41] O. Lecarme, Q. Sun, K. Ueno, H. Misawa. Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods. ACS Photon., 1, 538-546(2014).

    [42] R. C. Word, J. P. S. Fitzgerald, R. Konenkamp. Electron emission in the near-field of surface plasmons. Surf. Sci., 607, 148-152(2013).

    [43] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    CLP Journals

    [1] Jian Cui, Boyu Ji, Jingquan Lin. Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002

    Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, Qihuang Gong. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187
    Download Citation