• Journal of Semiconductors
  • Vol. 44, Issue 7, 074101 (2023)
Rongliang Li1, Yonghui Lin1, Yang Li1、2、*, Song Gao1, Wenjing Yue1, Hao Kan1, Chunwei Zhang1, and Guozhen Shen3、**
Author Affiliations
  • 1School of Information Science and Engineering, University of Jinan, Jinan 250022, China
  • 2School of Microelectronics, Shandong University, Jinan 250101, China
  • 3School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1088/1674-4926/44/7/074101 Cite this Article
    Rongliang Li, Yonghui Lin, Yang Li, Song Gao, Wenjing Yue, Hao Kan, Chunwei Zhang, Guozhen Shen. Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing[J]. Journal of Semiconductors, 2023, 44(7): 074101 Copy Citation Text show less
    References

    [1] Y H Wang, Y C Yang, Y Hao et al. Embracing the era of neuromorphic computing. J Semicond, 42, 010301(2021).

    [2] A Mpatziakas, A Drosou, S Papadopoulos et al. IoT threat mitigation engine empowered by artificial intelligence multi-objective optimization. J Netw Comput Appl, 203, 103398(2022).

    [3] T C Yao, J Wang, M Wan et al. VenusAI: an artificial intelligence platform for scientific discovery on supercomputers. J Syst Architect, 128, 102550(2022).

    [4] A S Sokolov, H Abbas, Y Abbas et al. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J Semicond, 42, 013101(2021).

    [5] X Q Zou, S Xu, X M Chen et al. Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci China Inf Sci, 64, 160404(2021).

    [6] Y Sandamirskaya, M Kaboli, J Conradt et al. Neuromorphic computing hardware and neural architectures for robotics. Sci Robot, 7, eabl8419(2022).

    [7] W H Xue, W J Ci, X H Xu et al. Optoelectronic memristor for neuromorphic computing. Chin Phys B, 29, 048401(2020).

    [8] S Y Xiang, Y N Han, Z W Song et al. A review: Photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 42, 023105(2021).

    [9] J Han, S Yun, S Lee et al. A review of artificial spiking neuron devices for neural processing and sensing. Adv Funct Mater, 32, 2204102(2022).

    [10] F C Zhou, Z Zhou, J W Chen et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 14, 776(2019).

    [11] F Y Liao, F C Zhou, Y Chai. Neuromorphic vision sensors: principle, progress and perspectives. J Semicond, 42, 013105(2021).

    [12] B J Shastri, A N Tait, T Ferreira de Lima et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 15, 102(2021).

    [13] Q Liu, S Gao, L Xu et al. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev, 51, 9(2022).

    [14] S Chen, Z Lou, D Chen et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 30, 1705400(2018).

    [15] M Y Tsai, K C Lee, C Y Lin et al. Photoactive electro-controlled visual perception memory for emulating synaptic metaplasticity and Hebbian learning. Adv Funct Mater, 31, 2105345(2021).

    [16] W Du, C H Li, Y X Hu et al. A heterosynapse-inspired photodetector for spatiotemporal feature fusion. IEEE Trans Electron Devices, 69, 4312(2022).

    [17] J D Gong, H H Wei, J Q Liu et al. An artificial visual nerve for mimicking pupil reflex. Matter, 5, 1578(2022).

    [18] G D Feng, J Jiang, Y R Li et al. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv Funct Mater, 31, 2104327(2021).

    [19] G L Ding, B D Yang, K Zhou et al. Synaptic plasticity and filtering emulated in metal-organic frameworks nanosheets based transistors. Adv Electron Mater, 6, 1900978(2020).

    [20] T Elliott. First passage time memory lifetimes for multistate, filter-based synapses. Neural Comput, 32, 1069(2020).

    [21] Y T Dai, Y M Fu, H Zeng et al. A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention. Adv Funct Mater, 28, 1800275(2018).

    [22] B Y Huang, N Li, Q Q Wang et al. Optoelectronic synapses based on MoS2 transistors for accurate image recognition. Adv Mater Interfaces, 2201558(2022).

    [23] D D Xie, K Yin, Z J Yang et al. Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision. Mater Horiz, 9, 1448(2022).

    [24] Z H Zhang, S Y Wang, C S Liu et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol, 17, 27(2022).

    [25] B Y Jiang, F C Zhou, Y Chai. Application of neuromorphic resistive random access memory in image processing. Acta Phys Sin, 71, 148504(2022).

    [26] Q H Liu, L Yin, C Zhao et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy, 97, 107171(2022).

    [27] J Y Zhang, Q Q Shi, R Z Wang et al. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat, 3, 904(2021).

    [28] Y H Wang, W J Cui, J Yu et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection. ACS Appl Mater Interfaces, 11, 45922(2019).

    [29] J Huang, T Chang, J Yang et al. Influence of oxygen concentration on resistance switching characteristics of gallium oxide. IEEE Electron Device Lett, 33, 1387(2012).

    [30] S Bhowmick, R Saha, M Mishra et al. Oxygen mediated defect evolution in RF sputtered Ga2O3 thin films on p-Si substrate. Mater Today Commun, 104766(2022).

    [31] L X Hu, J Yang, J R Wang et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 31, 2005582(2021).

    [32] M Karbalaei Akbari, J Hu, F Verpoort et al. Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett, 12, 83(2020).

    [33] F Q Wu, Y T Guo, J Ma. Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn, 109, 2063(2022).

    [34] R Held, C L Liu, K P Ma et al. Synapse and active zone assembly in the absence of presynaptic Ca2+ channels and Ca2+ entry. Neuron, 107, 667(2020).

    [35] M Kim, J Lee. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv Mater, 32, 1907826(2020).

    [36] W X Wang, S Gao, Y Li et al. Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv Funct Mater, 31, 2101201(2021).

    [37] A Thomson. Molecular frequency filters at central synapses. Prog Neurobiol, 62, 159(2000).

    [38] B Suh, S Baccus. Building blocks of temporal filters in retinal synapses. PLoS Biol, 12, e1001973(2014).

    [39] Z H Tan, X B Yin, R Yang et al. Pavlovian conditioning demonstrated with neuromorphic memristive devices. Sci Rep, 7, 713(2017).

    [40] J Li, W H Fu, Y X Lei et al. Oxygen-vacancy-induced synaptic plasticity in an electrospun InGdO nanofiber transistor for a gas sensory system with a learning function. ACS Appl Mater Interfaces, 14, 8587(2022).

    [41] J J Shi, Y Lin, T Zeng et al. Voltage-dependent plasticity and image Boolean operations realized in a WOx-based memristive synapse. J Semicond, 42, 014102(2021).

    Rongliang Li, Yonghui Lin, Yang Li, Song Gao, Wenjing Yue, Hao Kan, Chunwei Zhang, Guozhen Shen. Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing[J]. Journal of Semiconductors, 2023, 44(7): 074101
    Download Citation