• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120004 (2018)
Na Zhang1、2、**, Chenglong Wang1、*, Fei Liang1、2, Guodong Zhu1、2, and Lei Zhao1、2
Author Affiliations
  • 1 National Engineering Research Center for Technology and Equipment of Environmental Deposition, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • 2 Key Laboratory of Opto-Technology and Intelligent Control of the Ministry of Education, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • show less
    DOI: 10.3788/LOP55.120004 Cite this Article Set citation alerts
    Na Zhang, Chenglong Wang, Fei Liang, Guodong Zhu, Lei Zhao. Characteristics of Energy Flux Distribution of Concentrating Solar Power Systems[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120004 Copy Citation Text show less
    References

    [1] Fang Z J, Chen G T, Ye Q et al. Progress of photovoltaic electric power generation[J]. Chinese Journal of Lasers, 36, 5-14(2009).

    [2] Zhang H L, Baeyens J, Degreve J et al. Concentrated solar power plants:review and design methodology[J]. Renewable and Sustainable Energy Reviews, 22, 466-481(2013).

    [3] Dey C J. Heat transfer aspects of an elevated linear absorber[J]. Solar Energy, 76, 243-249(2004).

    [4] Eck M, Uhlig R, Mertins M et al. Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linearfresnel collectors[J]. Heat Transfer Engineering, 28, 42-48(2007).

    [5] Massidda L, Varone A. A numerical analysis of a high temperature solar collecting tube using gas as a heat transfer fluid[J]. Modern Preventive Medicine, 99, 1322-1329(2007).

    [6] Kearney D, Kelly B, Herrmann U et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy, 29, 861-870(2004).

    [7] Aldali Y, Muneer T, Henderson D. Solar absorber tube analysis:thermal simulation using CFD[J]. International Journal of Low-Carbon Technologies, 8, 14-19(2013).

    [8] Munoz J, Abanades A. Analysis of internal helically finned tubes for parabolic troughdesign by CFD tools[J]. Applied Energy, 88, 4139-4149(2011).

    [9] Haberle A. Zahler C, de Lalaing J, et al. The solarmundo project: advanced technology for solar thermal power generation. [C]∥Proceedings of the ISES 2001 Solar World Congress, November 25-30, 2001, Adelaide, Australia. Freiburg: ISES(2001).

    [10] Du B C, He Y L, Zheng Z J et al. Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J]. Applied Thermal Engineering, 99, 741-750(2016).

    [11] Wang J N, Li X, Chang C. Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J]. Proceedings of the CSEE, 30, 107-114(2010).

    [12] Riffelmann K J, Neumann A, Ulmer S. Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region[J]. Solar Energy, 80, 1303-1313(2006).

    [13] Schiricke B, Pitz-Paal R, Lupfert E et al. Validation of optical modeling of parabolic trough collectors by flux measurement. [C]∥ASME 2007 Energy Sustainability Conference, July 27-30, 2007, Long Beach, California, USA. New York: the American Society of Mechanical Engineers, 1071-1076(2007).

    [14] Wu P C, Zhu T Y, Cao F et al. Light band characteristics of parabolic trough solar collectors[J]. Laser & Optoelectronics Progress, 53, 071202(2016).

    [15] Jeter S M. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation[J]. Solar Energy, 37, 335-345(1986).

    [16] Jeter S M. Analytical determination of the optical performance of practical parabolic trough collectors from design data[J]. Solar Energy, 39, 11-21(1987).

    [17] Grena R. Optical simulation of a parabolic solar trough collector[J]. International Journal of Sustainable Energy, 29, 19-36(2010).

    [18] Wirz M, Roesle M, Steinfeld A. Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators[J]. Journal of Solar Energy Engineering, 134, 041012(2012).

    [19] Khanna S, Kedare S B, Singh S. Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator[J]. Solar Energy, 92, 26-40(2013).

    [20] Liu Y. Theoretical and experimental research of focal spot flux density distribution of solar energy concentrators[D]. Harbin: Harbin Institute of Technology, 57-65(2008).

    [21] He Y L, Xiao J, Cheng Z D et al. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector[J]. Renewable Energy, 36, 976-985(2011).

    [22] Cheng Z D, He Y L, Cui F Q et al. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method[J]. Solar Energy, 86, 1770-1784(2012).

    [23] Wu Z Y, Li S D, Yuan G F et al. Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver[J]. Applied Energy, 113, 902-911(2014).

    [24] Yan J, Peng Y D, Cheng Z R et al. Moving accumulative computation method for flux distribution of heat absorber in symmetry concentrating solar collector system[J]. Acta Optica Sinica, 36, 0508001(2016).

    [25] Xu C M, Li M, Ji X et al. Frequency statistics analysis for energy-flux-density distribution on focal plane of parabolic trough solar concentrators[J]. Acta Optica Sinica, 33, 0408001(2013).

    [26] Lei D Q, Wang Z F, Li J. The calculation and analysis of glass-to-metal sealing stress in solar absorber tube[J]. Renewable Energy, 35, 405-411(2010).

    [27] Lei D Q, Wang Z F, Li J et al. Experimental study of glass to metal seals for parabolic trough receivers[J]. Renewable Energy, 48, 85-91(2012).

    [28] Wang P, Liu D Y, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams[J]. Applied Energy, 102, 449-460(2013).

    [29] Mwesigye A, Bello-Ochende T. International Mechanical Engineering Congress and Exposition, November 15-21, 2013, San Diego, California, USA. New York: the American Society of Mechanical Engineers, 2013, 6B: V06BT7A031.(2013).

    [30] Sokhansefat T, Kasaeian A B, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid[J]. Renewable and Sustainable Energy Reviews, 33, 636-644(2014).

    [31] Zheng Z J, Li M J, He Y L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD[J]. International Journal of Heat and Mass Transfer, 87, 376-379(2015).

    [32] Almanza R, Lentz A, Jimenez G. Receiver behavior in direct steam generation with parabolic troughs[J]. Solar Energy, 61, 275-278(1997).

    [33] Flores V, Almanza R. Behavior of the compound wall copper-steel receiver with stratified two-phase flow regimen in transient states when solar irradiance is arriving on one side of receiver[J]. Solar Energy, 76, 195-198(2004).

    [34] Gee R, Winston R. A non-imaging secondary reflector for parabolic trough concentrators[R]. Golden: National Renewable Energy Laboratory(2001).

    [35] Tsai C Y, Lin P D. Optimized variable-focus-parabolic-trough reflector for solar thermal concentrator system[J]. Solar Energy, 86, 1164-1172(2012).

    [36] Wang K, He Y L, Cheng Z D. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution[J]. Science China Technological Sciences, 57, 531-540(2014).

    [37] Yan S Y, Chang Z, Wang F et al. Effect of dust accumulation on focal energy flux density distribution of trough solar concentrator and concentration optimization[J]. Acta Optica Sinica, 37, 0722002(2017).

    [38] Goswami R P, Negi B S, Sehgal H K et al. Optical designs and concentration characteristics of a linear Fresnel reflector solar concentrator with a triangular absorber[J]. Solar Energy Materials, 21, 237-251(1990).

    [39] Mathur S S, Negi B S, Kandpal T C. Geometrical designs and performance analysis of a linear Fresnel reflector solar concentrator with a flat horizontal absorber[J]. International Journal of Energy Research, 14, 107-124(1990).

    [40] Sootha G D, Negi B S. A comparative study of optical designs and solar flux concentrating characteristics of a linear Fresnel reflector solar concentrator with tubular absorber[J]. Solar Energy Materials and Solar Cells, 32, 169-186(1994).

    [41] Haberle A, Zahler C, Lerchenmuller H et al. The Solarmundo line focussing Fresnel collector. Optical and thermal performance and cost calculations. [C]∥Proceedings of 11th International Solar Power and Chemical Energy Systems(SolarPACES)Symposium, January , 2002. Zurich(2002).

    [42] Mills D R, Morrison G L. Compact linear Fresnel reflector solar thermal powerplants[J]. Solar Energy, 68, 263-283(2000).

    [43] Pino F J, Caro R, Rosa F et al. Experimental validation of an optical and thermal model of a linear Fresnel collector system[J]. Applied Thermal Engineering, 50, 1463-1471(2013).

    [44] Zhao J L, Li L, Cui Z J et al. Calculation of flux density distribution on focal plane in linear Fresnel reflector[J]. Acta Optica Sinica, 32, 1208001(2012).

    [45] Qiu Y, He Y L, Cheng Z D et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods[J]. Applied Energy, 146, 162-173(2015).

    [46] Okafor I F, Dirker J, Meyer J P. Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear Fresnel collector absorber tubes[J]. Solar Energy, 107, 381-397(2014).

    [47] Grena R, Tarquini P. Solar linear Fresnel collector using molten nitrates as heat transfer fluid[J]. Energy, 36, 1048-1056(2011).

    [48] Prasad G S C, Reddy K S, Sundararajan T. Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube[J]. Solar Energy, 150, 1-12(2017).

    [49] Qiu Y, He Y L, Cheng Z D. Optical performance investigation and optimization of a linear Fresnel reflector solar collector[J]. Journal of Engineering Thermophysics, 36, 2551-2556(2015).

    [50] He Y L, Wang K, Du B C et al. Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: a review[J]. Chinese Science Bulletin, 61, 3208-3237(2016).

    [51] Zhang L, Chen Z M, Dong Q M et al. Design and analysis of ring-shaped-focus fresnel concentrator[J]. Laser & Optoelectronics Progress, 49, 092201(2012).

    [52] Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants[J]. Renewable and Sustainable Energy Reviews, 23, 12-39(2013).

    [53] Ho C K, Khalsa S S, Gill D et al. Evaluation of a new tool for heliostat field flux mapping. [C]∥Proceedings of SolarPACES, September 20-23, 2011, Granada, Spain. United States, 1140911(2011).

    [54] Reilly H E, Kolb G J. An evaluation of molten-salt power towers including results of the solar two project Albuquerque,[R]. Livermore: Sandia National Labs(2001).

    [55] Litwin R Z. Receiver system: lessons learned from solar two[R]. Canoga Park: Sandia National Labs(2002).

    [56] Buck R, Brauning T, Denk T et al. Solar-hybrid gas turbine-based power tower systems (REFOS)[J]. Journal of Solar Energy Engineering, 124, 2-9(2002).

    [57] Xiao J, Wei S, Wei X D et al. Solar flux measurement method for concentrated solar irradiance in solar thermal power tower system[J]. Acta Optica Sinica, 35, 0112003(2015).

    [58] Wendelin T. SolTRACE: A new optical modeling tool for concentrating solar optics. [C]∥Proceedings of ASME 2003 International Solar Energy Conference. New York: American Society of Mechanical Engineers, 253-260(2003).

    [59] Relloso S, Olabarri B. SENSOL as a key tool for solar commercial projects. [C]∥SolarPACES: Congress(2008).

    [60] Siala F M F, Elayeb M E. Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J]. Renewable Energy, 23, 77-92(2001).

    [61] Baker A F, Faas S E, Radosevich L G et al. US-Spain evaluation of the solar one and CESA-I receiver and storage systems[R]. Livermore: Sandia National Labs, 6425928(1989).

    [63] Collado F J, G􀆩mez A, Turegano J A. An analytic function for the flux density due to sunlight reflected from a heliostat[J]. Solar Energy, 37, 215-234(1986).

    [64] Schwarzbozl P, Schmitz M, Pitz-Paal R. Visual HFLCAL-a software tool for layout and optimization of heliostat fields[C]. SolarPACES Conference. Berlin: Solar PACES, 15-18(2009).

    [65] Besarati S M, Yogi Goswami D, Stefanakos E K. Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant[J]. Energy Conversion and Management, 84, 234-243(2014).

    [66] Yu Q, Wang Z F, Xu E S et al. Modeling and simulation of 1 MWe solar tower plant's solar flux distribution on the central cavity receiver[J]. Simulation Modelling Practice and Theory, 29, 123-136(2012).

    [67] He Y L, Cui F Q, Cheng Z D et al. Numerical simulation of solar radiation transmission process for the solar tower power plant: from the heliostat field to the pressurized volumetric receiver[J]. Applied Thermal Engineering, 61, 583-595(2013).

    [68] Wang K, He Y L, Qiu Y et al. A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver[J]. Renewable Energy, 89, 93-107(2016).

    [69] Montes M J, Rovira A. Martinez-Val J M, et al. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers[J]. Applied Thermal Engineering, 35, 220-232(2012).

    [70] Zheng Z J, Li M J, He Y L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 185, 1152-1161(2017).

    [71] Roger M, Rickers C, Uhlig R et al. Infrared-reflective coating on fused silica for a solar high-temperature receiver[J]. Journal of Solar Energy Engineering, 131, 021004(2009).

    [72] Tu N, Wei J J, Fang J B. Numerical investigation on uniformity of heat flux for semi-gray surfaces inside a solar cavity receiver[J]. Solar Energy, 112, 128-143(2015).

    [73] Yu Q, Wang Z F, Xu E S. Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field[J]. Applied Energy, 136, 417-430(2014).

    [74] Buck R, Barth C, Eck M et al. Dual-receiver concept for solar towers[J]. Solar Energy, 80, 1249-1254(2006).

    [75] Tu N, Wei J J, Fang J B. Numerical study on thermal performance of a solar cavity receiver with different depths[J]. Applied Thermal Engineering, 72, 20-28(2014).

    [76] Tlili I, Timoumi Y, Nasrallah S B. Analysis and design consideration of mean temperature differential Stirling engine for solar application[J]. Renewable Energy, 33, 1911-1921(2008).

    [77] Zhang Y M, Zou N Y[M]. Solar thermal power generation technology, 239-241(2015).

    [78] Johnston G. Focal region measurements of the 20 m2 tiled dish at the Australian National University[J]. Solar Energy, 63, 117-124(1998).

    [79] Jaramillo O A. Perez-Rabago C A, Arancibia-Bulnes C A, et al. A flat-plate calorimeter for concentrated solar flux evaluation[J]. Renewable Energy, 33, 2322-2328(2008).

    [80] Liu Y, Dai J M, Lang Z G et al. Finite-element analysis for flux distribution on focal plane of rotating parabolic concentrators[J]. Acta Optica Sinica, 27, 1775-1778(2007).

    [81] Steinfeld A, Schubnell M. Optimum aperture size and operating temperature of a solar cavity-receiver[J]. Solar Energy, 50, 19-25(1993).

    [82] Xia X L, Dai G L, Shuai Y. Experimental and numerical investigation on solar concentrating characteristics of a sixteen-dish concentrator[J]. International Journal of Hydrogen Energy, 37, 18694-18703(2012).

    [83] Dai G L, Xia X L, Sun C et al. Numerical investigation of the solar concentrating characteristics of 3D CPC and CPC-DC[J]. Solar Energy, 85, 2833-2842(2011).

    [84] Shuai Y, Xia X L, Tan H P. Numerical simulation and experiment research of radiation performance in a dish solar collector system[J]. Frontiers of Energy and Power Engineering in China, 4, 488-495(2010).

    [85] Cui F Q, He Y L, Cheng Z D et al. Modeling of the dish receiver with the effect of inhomogeneous radiation flux distribution[J]. Heat Transfer Engineering, 35, 780-790(2014).

    [86] Tao Y B, He Y L, Cui F Q et al. Numerical study on coupling phase change heat transfer performance of solar dish collector[J]. Solar Energy, 90, 84-93(2013).

    [87] Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems[J]. Solar Energy, 82, 13-21(2008).

    [88] Shuai Y, Wang F Q, Xia X L et al. Radiative properties of a solar cavity receiver/reactor with quartz window[J]. International Journal of Hydrogen Energy, 36, 12148-12158(2011).

    [89] Gong J H, Wang C L, Gong C Y et al. Study on the uniformity of high concentration photovoltaic system with array algorithm[J]. Solar Energy, 153, 181-187(2017).

    Na Zhang, Chenglong Wang, Fei Liang, Guodong Zhu, Lei Zhao. Characteristics of Energy Flux Distribution of Concentrating Solar Power Systems[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120004
    Download Citation