• Photonics Research
  • Vol. 7, Issue 6, 699 (2019)
Bin Huang1, Zhe Kang2、3, Jie Li1, Mingyi Liu2, Pinghua Tang4, Lili Miao1, Chujun Zhao1、*, Guanshi Qin2、5, Weiping Qin2, Shuangchun Wen1, and Paras N. Prasad6
Author Affiliations
  • 1Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
  • 3Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China
  • 4Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, China
  • 5e-mail: qings@jlu.edu.cn
  • 6Institute for Lasers, Photonics, Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
  • show less
    DOI: 10.1364/PRJ.7.000699 Cite this Article Set citation alerts
    Bin Huang, Zhe Kang, Jie Li, Mingyi Liu, Pinghua Tang, Lili Miao, Chujun Zhao, Guanshi Qin, Weiping Qin, Shuangchun Wen, Paras N. Prasad. Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime[J]. Photonics Research, 2019, 7(6): 699 Copy Citation Text show less
    References

    [1] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6, 423-431(2012).

    [2] C. H. Zhu, F. Q. Wang, Y. F. Meng, X. F. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. Liang, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, S. N. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [3] Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. A. Zhang, G. Bi, X. F. Liu, J. R. Qiu. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals. ACS Nano, 10, 9463-9469(2016).

    [4] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser. Advanced Solid-State Lasers Congress, AF2A.9(2013).

    [5] Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, L. J. Qian. Black phosphorus as saturable absorber for the Q-switched Er3+: ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

    [6] C. Wei, X. S. Zhu, R. A. Norwood, N. Peyghambarian. Passively Q-switched 2.8  μm nanosecond fiber laser. IEEE Photon. Technol. Lett., 24, 1741-1744(2012).

    [7] P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, S. C. Wen. 2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator. IEEE Photon. Technol. Lett., 28, 1573-1576(2016).

    [8] M. Q. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. H. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er: Lu2 O3 laser at 2.84  μm using MoS2. Opt. Lett., 41, 540-543(2016).

    [9] P. H. Tang, Z. P. Qin, J. Liu, C. J. Zhao, G. Q. Xie, S. C. Wen, L. J. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm. Opt. Lett., 40, 4855-4858(2015).

    [10] J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, S. K. Turistyn. Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser. Laser Phys. Lett., 11, 065102(2014).

    [11] Z. K. Liu, H. R. Mu, S. Xiao, R. B. Wang, Z. T. Wang, W. W. Wang, Y. J. Wang, X. X. Zhu, K. Y. Lu, H. Zhang, S. T. Lee, Q. L. Bao, W. L. Ma. Pulsed lasers employing solution‐processed plasmonic Cu3–xP colloidal nanocrystals. Adv. Mater., 28, 3535-3542(2016).

    [12] K. Yin, B. Zhang, L. Li, T. Jiang, X. F. Zhou. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm. Photon. Res., 3, 72-76(2015).

    [13] W. Q. Yang, J. Hou, B. Zhang, R. Song, Z. J. Hou. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2  μm. Appl. Opt., 51, 5664-5667(2012).

    [14] Y. H. Lin, S. H. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, G. R. Lin. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon., 2, 481-490(2015).

    [15] Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, C. K. Lee. Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein. Nanoscale, 9, 19100-19107(2018).

    [16] D. Li, H. Xue, Y. D. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. F. Li, J. Riikonen, F. W. Ye, Q. Dai, Z. Y. Ren, J. T. Bai, T. Hasan, H. Lipsanen, Z. P. Sun. Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator. Opt. Lett., 43, 3497-3500(2018).

    [17] X. T. Kong, B. Bai, Q. Dai. Graphene plasmon propagation on corrugated silicon substrates. Opt. Lett., 40, 1-4(2015).

    [18] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [19] G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrechat, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats. Nanostructured materials for photon detection. Nat. Nanotechnol., 6, 107-111(2010).

    [20] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [21] H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem. Mater., 17, 6447-6451(2005).

    [22] L. Vigderman, B. P. Khanal, E. R. Zubarev. Functional gold nanorods: synthesis, self‐assembly, and sensing applications. Adv. Mater., 24, 4811-4841(2012).

    [23] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [24] K. Maximova, A. Aristov, M. Sentis, A. V. Kabashin. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology, 26, 065601(2015).

    [25] H. I. Elim, J. Yang, J. Y. Lee, J. Mi, W. Ji. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl. Phys. Lett., 88, 083107(2006).

    [26] J. O. Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, M. Samoc. Third-order nonlinear optical properties of colloidal gold nanorods. J. Phys. Chem. C, 116, 13731-13737(2012).

    [27] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, M. A. El-Sayed. Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time. Phys. Rev. B, 61, 6086-6090(2006).

    [28] Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, W. P. Qin. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl. Phys. Lett., 103, 041105(2013).

    [29] T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, W. P. Qin. Passively Q-switching induced by gold nanocrystals. Appl. Phys. Lett., 101, 151122(2012).

    [30] H. T. Huang, M. Li, L. Wang, X. Liu, D. Y. Shen, D. Y. Tang. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser. IEEE Photon. J., 7, 14501210(2015).

    [31] H. Zhang, J. Liu. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1  μm region. Opt. Lett., 41, 1150-1152(2016).

    [32] S. X. Wang, Y. X. Zhang, J. Xin, X. F. Liu, H. H. Yu, A. D. Lieto, M. Tonelli, T. C. Sum, H. J. Zhang, Q. H. Xiong. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Appl. Phys. Lett., 107, 161103(2015).

    [33] D. D. Wu, J. Ping, Z. P. Cai, J. Weng, Z. Q. Luo, N. Chen, H. Y. Xu. Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation. Opt. Express, 23, 24071-24076(2015).

    [34] X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, W. C. Xu. Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods. Laser Phys. Lett., 13, 045101(2016).

    [35] Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, W. P. Qin. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser. Opt. Mater. Express, 3, 1986-1991(2013).

    [36] B. Nikoobakht, M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater., 15, 1957-1962(2003).

    [37] X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, C. B. Murray. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 6, 2804-2817(2012).

    [38] K. Park, S. Biswas, S. Kanel, D. Nepal, R. A. Vaia. Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section. J. Phys. Chem. C, 118, 5918-5926(2014).

    [39] J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrustsky, A. Qique, R. Vaia, B. Ratna. Widely tunable infrared plasmonic nanoantennas using directed assembly. Adv. Opt. Mater., 5, 1700335(2017).

    [40] J. Fontana, N. Charipar, S. R. Flom, J. Naciri, A. Piqué, B. R. Ratna. Rise of the charge transfer plasmon: programmable concatenation of conductively linked gold nanorod dimers. ACS Photon., 3, 904-911(2016).

    [41] G. González-Rubio, J. González-Izquierdo, L. Bares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Pena-Rodríguez, A. Guerrero-Martínez, L. M. Liz-Marzán. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett., 15, 8282-8288(2015).

    [42] L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, J. J. Baumberg. Threading plasmonic nanoparticle strings with light. Nat. Commun., 5, 4568(2014).

    [43] K. Liu, A. Ahmed, S. Chung, K. Sugikawa, G. Wu, Z. Nie, R. Gordon, E. Kumacheva. In situ plasmonic counter for polymerization of chains of gold nanorods in solution. ACS Nano, 7, 5901-5910(2013).

    [44] P. Pramod, K. G. Thomas. Plasmon coupling in dimers of Au nanorods. Adv. Mater., 20, 4300-4305(2008).

    [45] M. Maldonado, H. T. M. C. M. Baltar, A. S. L. Gomes, R. Vaia, K. Park, J. Che, M. Hsiao, C. B. de Araújo, A. Baev, P. N. Prasad. Coupled-plasmon induced optical nonlinearities in anisotropic arrays of gold nanorod clusters supported in a polymeric film. J. Appl. Phys., 121, 143103(2017).

    [46] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [47] J. Liu, P. Tang, Y. Chen, C. Zhao, D. Shen, S. Wen, D. Fan. Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er: YAG laser. Opt. Express, 23, 20812-20819(2015).

    [48] P. H. Tang, J. Liu, B. Huang, C. W. Xu, C. J. Zhao, S. C. Wen. Stable and wavelength-locked Q-switched narrow-linewidth Er: YAG laser at 1645  nm. Opt. Express, 23, 11037-11042(2015).

    CLP Journals

    [1] Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, Dezhen Shen. Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources[J]. Photonics Research, 2020, 8(1): 91

    [2] Duo-Duo Zhang, Xiao-Feng Liu, Jian-Rong Qiu. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures[J]. Acta Physica Sinica, 2020, 69(18): 189101-1

    Bin Huang, Zhe Kang, Jie Li, Mingyi Liu, Pinghua Tang, Lili Miao, Chujun Zhao, Guanshi Qin, Weiping Qin, Shuangchun Wen, Paras N. Prasad. Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime[J]. Photonics Research, 2019, 7(6): 699
    Download Citation