• Chinese Optics Letters
  • Vol. 21, Issue 9, 090007 (2023)
Wenjie Xu1, Qiang Bian2,3,4, Jianqiao Liang1, Zhencheng Wang1..., Yang Yu1,* and Zhou Meng4|Show fewer author(s)
Author Affiliations
  • 1Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • 2Photonics Laboratory, Munich University of Applied Sciences, Munich 80335, Germany
  • 3Institute for Measurement and Sensor Technology, Technical University of Munich, Munich 80333, Germany
  • 4College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202321.090007 Cite this Article Set citation alerts
    Wenjie Xu, Qiang Bian, Jianqiao Liang, Zhencheng Wang, Yang Yu, Zhou Meng, "Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]," Chin. Opt. Lett. 21, 090007 (2023) Copy Citation Text show less
    References

    [1] H. Xia, D. Byrd, S. Dekate, B. Lee. High-density fiber optical sensor and instrumentation for gas turbine operation condition monitoring. J. Sens., 2013, 206738(2013).

    [2] Y. S. H. Najjar, I. A. I. Balawneh. Optimization of gas turbines for sustainable turbojet propulsion. Propuls. Power Res., 4, 114(2015).

    [3] W. Ma, Y. Jiang, H. Gao. Miniature all-fiber extrinsic Fabry–Pérot interferometric sensor for high-pressure sensing under high-temperature conditions. Meas. Sci. Technol., 30, 025104(2019).

    [4] M. Chen, H. Qiu, W. Xie, B. Zhang, S. Liu, W. Luo, X. Ma. Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine. IOP Conf. Ser. Mater. Sci. Eng., 678, 012043(2019).

    [5] T. Bosselmann. Innovative applications of fibre-optic sensors in energy and transportation [Invited Paper]. Proc. SPIE, 5855, 188(2005).

    [6] L. Polz, A. Zeisberger, H. Bartelt, J. Roths. Total temperature measurement of fast air streams with fiber-optic Bragg grating sensors. IEEE Sens. J., 16, 6596(2016).

    [7] K. M. Pandey, G. Choubey, F. Ahmed, D. H. Laskar, P. Ramnani. Effect of variation of hydrogen injection pressure and inlet air temperature on the flow-field of a typical double cavity scramjet combustor. Int. J. Hydrog. Energy, 42, 20824(2017).

    [8] Y. Tian, S. Yang, J. Le, T. Su, M. Yue, F. Zhong, X. Tian. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor. Int. J. Hydrog. Energy, 41, 19218(2016).

    [9] J. Urzay. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech., 50, 593(2018).

    [10] A. Purwar, S. Deep. A novel thermocouple for ultra high temperature applications: design and computational analysis. IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 145(2017).

    [11] H.-N. Li, D.-S. Li, G.-B. Song. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct., 26, 1647(2004).

    [12] W. Li, T. Liang, P. Jia, C. Lei, Y. Hong, Y. Li, Z. Yao, W. Liu, J. Xiong. Fiber-optic Fabry-Perot pressure sensor based on sapphire direct bonding for high-temperature applications. Appl. Opt., 58, 1662(2019).

    [13] J. Deng, D. N. Wang. Construction of cascaded Fabry-Perot interferometers by four in-fiber mirrors for high-temperature sensing. Opt. Lett., 44, 1289(2019).

    [14] C. R. Liao, D. N. Wang. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photonic Sens., 3, 97(2012).

    [15] H. Xiao, J. Deng, G. Pickrell, R. G. May, A. Wang. Single-crystal sapphire fiber-based strain sensor for high-temperature applications. J. Lightwave Technol., 21, 2276(2003).

    [16] D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett., 16, 2505(2004).

    [17] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, H. Bartelt. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Meas. Sci. Technol., 20, 115301(2009).

    [18] S. Yang, D. Hu, A. Wang. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett., 42, 4219(2017).

    [19] Y. Tu, Y.-K. Huang, S.-T. Tu. Real-time monitoring of bolt clamping force at high temperatures using metal-packaged regenerated fiber Bragg grating sensors. Int. J. Press. Vessels Pip., 172, 119(2019).

    [20] Y.-L. Wang, Y. Tu, S.-T. Tu. A study of tensile and fatigue loading effects on the performance of metal-packaged FBG strain sensor developed for cryogenic applications. IEEE Sens. J., 22, 11763(2022).

    [21] M. Lindner, A. Stadler, G. Hamann, B. Fischer, M. Jakobi, F. Heilmeier, C. Bauer, W. Volk, A. W. Koch, J. Roths. Fiber Bragg sensors embedded in cast aluminum parts: axial strain and temperature response. Sensors, 21, 1680(2021).

    [22] F. Heilmeier, R. Koos, K. Weraneck, M. Lindner, M. Jakobi, J. Roths, A. W. Koch, W. Volk. In-situ strain measurements in the plastic deformation regime inside casted parts using fibre-optical strain sensors. Prod. Eng., 13, 351(2019).

    [23] S. K. Chilelli, J. J. Schomer, M. J. Dapino. Detection of crack initiation and growth using fiber Bragg grating sensors embedded into metal structures through ultrasonic additive manufacturing. Sensors, 19, 4917(2019).

    [24] D. Havermann, J. Mathew, W. N. MacPherson, R. R. J. Maier, D. P. Hand. Temperature and strain measurements with fiber Bragg gratings embedded in stainless steel 316. J. Lightwave Technol., 33, 2474(2015).

    [25] C. Lupi, F. Felli, A. dell’Era, E. Ciro, M. A. Caponero, H. J. Kalinowski, C. Vendittozzi. Critical issues of double-metal layer coating on FBG for applications at high temperatures. Sensors, 19, 3824(2019).

    [26] R. R. Dils. High-temperature optical fiber thermometer. J. Appl. Phys., 54, 1198(1983).

    [27] D. Liu, Y. Duan, Z. Yang. Integrated ef fective emissivity computation for non-isothermal non-axisymmetric cavities. Chin. Opt. Lett., 11, 022001(2013).

    [28] Y. Guo, W. Xia, Z. Hu, M. Wang. High-temperature sensor instrumentation with a thin-film-based sapphire fiber. Appl. Opt., 56, 2068(2017).

    [29] W. Wei, S. Xiaotian, W. Ying. Sapphire fiber-optic temperature sensor based on black-body radiation law. Procedia Eng., 99, 1179(2015).

    [30] A. Othonos. Fiber Bragg gratings. Rev. Sci. Instrum., 68, 4309(1997).

    [31] M. Lindner, E. Tunc, K. Weraneck, F. Heilmeier, W. Volk, M. Jakobi, A. W. Koch, J. Roths. Regenerated Bragg grating sensor array for temperature measurements during an aluminum casting process. IEEE Sens. J., 18, 5352(2018).

    [32] K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett., 32, 647(1978).

    [33] T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe. Decay of ultraviolet-induced fiber Bragg gratings. J. Appl. Phys., 76, 73(1994).

    [34] Y. Huang, Z. Zhou, Y. Zhang, G. Chen, H. Xiao. A temperature self-compensated LPFG sensor for large strain measurements at high temperature. IEEE Trans. Instrum. Meas., 59, 2997(2010).

    [35] J. Canning, M. Stevenson, S. Bandyopadhyay, K. Cook. Extreme silica optical fibre gratings. Sensors, 8, 6448(2008).

    [36] Y. Zhu, H. Mei, T. Zhu, J. Zhang, S. Yin. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain. Chin. Opt. Lett., 7, 675(2009).

    [37] F. J. Dutz, A. Heinrich, R. Bank, A. W. Koch, J. Roths. Fiber-optic multipoint sensor system with low drift for the long-term monitoring of high-temperature distributions in chemical reactors. Sensors, 19, 5476(2019).

    [38] G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, S. Rougeault. Temperature resistant fiber bragg gratings for on-line and structural health monitoring of the next-generation of nuclear reactors. Sensors, 18, 1791(2018).

    [39] L. Polz, F. J. Dutz, R. R. J. Maier, H. Bartelt, J. Roths. Regenerated fibre Bragg gratings: a critical assessment of more than 20 years of investigations. Opt. Laser Technol., 134, 106650(2021).

    [40] M. A. Fokine, B. E. Sahlgren, R. Stubbe. A novel approach to fabricate high-temperature resistant fiber Bragg gratings. Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides, BSuD.5(1997).

    [41] H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, H. Ahmad. In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature. IEEE Photon. Technol. Lett., 27, 58(2015).

    [42] D. S. Gunawardena, O. K. Law, Z. Liu, X. Zhong, Y. T. Ho, H. Y. Tam. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400°C. Opt. Express, 28, 10595(2020).

    [43] P. Rinaudo, B. Torres, I. Paya-Zaforteza, P. A. Calderón, S. Sales. Evaluation of new regenerated fiber Bragg grating high-temperature sensors in an ISO 834 fire test. Fire Saf. J., 71, 332(2015).

    [44] F. J. Dutz, M. Lindner, A. Heinrich, C. G. Seydel, T. Bosselmann, A. W. Koch, J. Roths. Multipoint high temperature sensing with regenerated fiber Bragg gratings. Proc. SPIE, 10654, 1065407(2018).

    [45] J. L. Archambault, L. Reekie, P. St.J. Russell. 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electron. Lett., 29, 453(1993).

    [46] A. Martinez, M. Dubov, I. Khrushchev, I. Bennion. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett., 40, 1170(2004).

    [47] D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker. Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol., 17, 1009(2006).

    [48] Y. Li, M. Yang, C. Liao, D. Wang, J. Lu, P. Lu. Prestressed fiber Bragg grating with high temperature stability. J. Lightwave Technol., 29, 1555(2011).

    [49] S. C. Warren-Smith, E. P. Schartner, L. V. Nguyen, D. E. Otten, Z. Yu, D. G. Lancaster, H. Ebendorff-Heidepriem. Stability of grating-based optical fiber sensors at high temperature. IEEE Sens. J., 19, 2978(2019).

    [50] D. Grobnic, C. Hnatovsky, S. Dedyulin, R. B. Walker, H. Ding, S. J. Mihailov. Fiber Bragg grating wavelength drift in long-term high temperature annealing. Sensors, 21, 1454(2021).

    [51] R. B. Walker, S. Yun, M. De Silva, N. Charest, C. Hnatovsky, P. Lu, D. Robertson, S. J. Mihailov, P. Vena. High temperature measurement of a low emission, high pressure combustor using femtosecond laser written fiber Bragg gratings. Proc. SPIE, 10654, 1065408(2018).

    [52] M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, K. P. Chen. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores. Opt. Express, 26, 11775(2018).

    [53] J. Yao, L. Ye, Y. Ishii, Z. Shen, L. Tong, Y. Shen. Optical properties of sapphire fiber under high temperature. Proc. SPIE, 4919, 161(2002).

    [54] S. Yang, D. Hu, A. Wang. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett., 42, 4219(2017).

    [55] X. Xu, J. He, C. Liao, K. Yang, K. Guo, C. Li, Y. Zhang, Z. Ouyang, Y. Wang. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett., 43, 4562(2018).

    [56] D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser. Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres. Meas. Sci. Technol., 17, 980(2006).

    [57] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, H. Bartelt. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Meas. Sci. Technol., 20, 115301(2009).

    [58] T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, M. A. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Therm. Eng., 91, 860(2015).

    [59] J. He, X. Xu, B. Du, B. Xu, R. Chen, Y. Wang, C. Liao, J. Guo, Y. Wang, J. He. Stabilized ultra-high-temperature sensors based on inert gas-sealed sapphire fiber Bragg gratings. ACS Appl. Mater. Interfaces, 14, 12359(2022).

    [60] J. Canning. Fibre gratings and devices for sensors and lasers. Laser Photonics Rev., 2, 275(2008).

    [61] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 14, 823(1989).

    [62] B. Dong, L. Wei, D.-P. Zhou. Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer. Appl. Opt., 48, 6466(2009).

    [63] X. Tan, Y. Geng, X. Li, R. Gao, Z. Yin. High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer. Appl. Opt., 52, 8195(2013).

    [64] Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, Z. Feng. A miniature Fabry–Pérot interferometer for high temperature measurement using a double-core photonic crystal fiber. IEEE Sens. J., 14, 1069(2014).

    [65] W. Ding, Y. Jiang, R. Gao, Y. Liu. High-temperature fiber-optic Fabry-Perot interferometric sensors. Rev. Sci. Instrum., 86, 055001(2015).

    [66] Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, Z. Li. High-temperature sensor based on Fabry-Perot interferometer in microfiber tip. Sensors, 18, 202(2018).

    [67] Q. Wang, H. Zhang, D. N. Wang. Cascaded multiple Fabry-Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing. Opt. Lett., 44, 5145(2019).

    [68] G. Zhang, X. Wu, S. Li, W. Liu, S. Fang, C. Zuo, W. Zhang, B. Yu. Miniaturized Fabry-Perot probe utilizing PMPCF for high temperature measurement. Appl. Opt., 59, 873(2020).

    [69] P. Xia, Y. Tan, C. Yang, Z. Zhou, K. Yun. A composite Fabry-Perot interferometric sensor with the dual-cavity structure for simultaneous measurement of high temperature and strain. Sensors, 21, 4989(2021).

    [70] Y. Han, B. Liu, Y. Wu, Y. Mao, J. Wu, L. Zhao, T. Nan, J. Wang, R. Tang, Y. Zhang. High-sensitivity transverse-load and high-temperature sensor based on the cascaded Vernier effect. Appl. Opt., 60, 7714(2021).

    [71] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, O. Frazão. Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement. Opt. Commun., 285, 1159(2012).

    [72] A. Kaur, S. E. Watkins, J. Huang, L. Yuan, H. Xiao. Microcavity strain sensor for high temperature applications. Opt. Eng., 53, 017105(2014).

    [73] Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, J. Zhao. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer. Appl. Opt., 55, 6341(2016).

    [74] P. Zhang, L. Zhang, Z. Wang, X. Zhang, Z. Shang. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures. Opt. Express, 27, 27112(2019).

    [75] J. Nan, D. Zhang, X. Wen, M. Li, H. Lv, K. Su. Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length. IEEE Sens. J., 20, 5270(2020).

    [76] X. Liu, P. Nan, J. Zhu, Z. Li, J. Dan, W. Dang, K.-S. Lim, W. Udos, H. Ahmad, X. Liu. Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain. Opt. Commun., 508, 127717(2022).

    [77] Y. Hu, H. Wei, Z. Ma, L. Zhang, F. Pang, T. Wang. Microbubble-based optical fiber Fabry-Perot sensor for simultaneous high-pressure and high-temperature sensing. Opt. Express, 30, 33639(2022).

    [78] Z. Li, W. Dang, J. Dan, K. Jin, P. Nan, G. Xin, K.-S. Lim, H. Ahmad, H. Yang. High-sensitivity interferometric high-temperature strain sensor based on optical harmonic Vernier effect. Opt. Fiber Technol., 79, 103361(2023).

    [79] X. L. Cui, H. Zhang, D. N. Wang. Parallel structured optical fiber in-line Fabry-Perot interferometers for high temperature sensing. Opt. Lett., 45, 726(2020).

    [80] Z. Wang, H. Liu, Z. Ma, Z. Chen, T. Wang, F. Pang. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer. Opt. Express, 27, 27691(2019).

    [81] T. Paixao, F. Araujo, P. Antunes. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry-Perot interferometer fabricated by a femtosecond laser. Opt. Lett., 44, 4833(2019).

    [82] G. C. Fang, P. G. Jia, Q. Cao, J. J. Xiong. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application. Proc. SPIE, 10155, 101552H(2016).

    [83] W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, J. Huang. Adhesive-free bonding homogenous fused-silica Fabry–Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding. Opt. Commun., 435, 97(2019).

    [84] T. Yoshino, K. Kurosawa, K. Itoh, T. Ose. Fiber-optic Fabry-Perot interferometer and its sensor applications. IEEE Trans. Microw. Theory Tech., 30, 1612(1982).

    [85] C. E. Lee, H. F. Taylor. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. J. Lightwave Technol., 9, 129(1991).

    [86] H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, E. S. Choi. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett., 33, 2455(2008).

    [87] T. Wei, Y. Han, H.-L. Tsai, H. Xiao. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett., 33, 536(2008).

    [88] X. Lei, X. Dong, B. Zagar, P. Mazurek, M. Rosenberger, P.-G. Dittrich. Sensitivity-enhanced fiber interferometric high temperature sensor based on Vernier effect. Proc. SPIE, 11144, 1114405(2019).

    [89] X. Lei, X. Dong. High-sensitivity Fabry–Perot interferometer high-temperature fiber sensor based on Vernier effect. IEEE Sens. J., 20, 5292(2020).

    [90] J. Wang, E. M. Lally, B. Dong, J. Gong, A. Wang. Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip. IEEE Sens. J., 11, 3406(2011).

    [91] H. Xiao, J. Deng, G. Pickrell, R. G. May, A. Wang. Single-crystal sapphire fiber-based strain sensor for high-temperature applications. J. Lightwave Technol., 21, 2276(2003).

    [92] H. Liu, F. Pang, L. Hong, Z. Ma, L. Huang, Z. Wang, J. Wen, Z. Chen, T. Wang. Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing. Opt. Express, 27, 6201(2019).

    [93] A. Wang, S. Gollapudi, K. A. Murphy, R. G. May, R. O. Claus. Sapphire-fiber-based intrinsic Fabry–Perot interferometer. Opt. Lett., 17, 1021(1992).

    [94] Y. Zhu, A. Wang. Surface-mount sapphire interferometric temperature sensor. Appl. Opt., 45, 6071(2006).

    [95] X. Yu, S. Wang, J. Jiang, K. Liu, Z. Wu, T. Liu. Self-filtering high-resolution dual-sapphire-fiber-based high-temperature sensor. J. Lightwave Technol., 37, 1408(2019).

    [96] S. Yang, Z. Feng, X. Jia, G. Pickrell, W. Ng, A. Wang, Y. Zhu. All-sapphire miniature optical fiber tip sensor for high temperature measurement. J. Lightwave Technol., 38, 1988(2020).

    [97] P. S. Reddy. Encapsulated fiber Bragg grating sensor for high temperature measurements. Opt. Eng., 50, 114401(2011).

    [98] N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, R. P. Tatam. Development and application of optical fibre strain and pressure sensors for in-flight measurements. Meas. Sci. Technol., 27, 104001(2016).

    [99] B. Wang, Y. Niu, S. Zheng, Y. Yin, M. Ding. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer. IEEE Photon. Technol. Lett., 32, 89(2020).

    [100] V. R. Mamidi, S. Kamineni, L. N. S. P. Ravinuthala, M. Martha, S. S. Madhuvarasu, V. R. Thumu. High-temperature measurement using fiber Bragg grating sensor accompanied by a low-cost detection system. J. Appl. Remote Sens., 9, 094098(2015).

    [101] P. Xia, Y. Tan, T. Li, Z. Zhou, W. Lv. A high-temperature resistant photonic crystal fiber sensor with single-side sliding Fabry-Perot cavity for super-large strain measurement. Sens. Actuators A, 318, 112492(2021).

    [102] P. Chen, Y. Wu, Y. Wang. Optical fiber Fabry-Perot temperature sensor based on metal welding technology. J. Nanophotonics, 17, 026001(2023).

    [103] T. Habisreuther, T. Elsmann, A. Graf, M. A. Schmidt. High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings. IEEE Photon. J., 8, 1(2016).

    [104] Y. Tu, S.-T. Tu. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components. Smart Mater. Struct., 23, 035001(2014).

    [105] K. Yao, Q. Lin, Z. Jiang, N. Zhao, B. Tian, G.-D. Peng. Design and analysis of a combined FBG Sensor for the measurement of three parameters. IEEE Trans. Instrum. Meas., 70, 7003010(2021).

    [106] C. M. Petrie, N. Sridharan, A. Hehr, M. Norfolk, J. Sheridan. High-temperature strain monitoring of stainless steel using fiber optics embedded in ultrasonically consolidated nickel layers. Smart Mater. Struct., 28, 085041(2019).

    [107] C. Lupi, F. Felli, A. Brotzu, M. A. Caponero, A. Paolozzi. Improving FBG sensor sensitivity at cryogenic temperature by metal coating. IEEE Sens. J., 8, 1299(2008).

    [108] S. Li, Y. Li, X. Liu, X. Li, T. Ding, H. Ouyang. An in-situ electroplating fabricated Fabry-Perot interferometric sensor and its temperature sensing characteristics. Coatings, 10, 1174(2020).

    [109] Y. Li, Z. Hua, F. Yan, P. Gang. Metal coating of fiber Bragg grating and the temperature sensing character after metallization. Opt. Fiber Technol., 15, 391(2009).

    [110] Y. Li, H. Zhang, Y. Feng, G. Peng. A plating method for metal coating of fiber Bragg grating. Chin. Opt. Lett., 7, 115(2009).

    [111] X. Zheng, W. Hu, N. Zhang, M. Gao. Optical corrosion sensor based on fiber Bragg grating electroplated with Fe-C film. Opt. Eng., 53, 077104(2014).

    [112] Q. Bian, C. Bauer, A. Stadler, M. Lindner, M. Jakobi, W. Volk, A. W. Koch, J. Roths. In-situ high temperature and large strain monitoring during a copper casting process based on regenerated fiber Bragg grating sensors. J. Lightwave Technol., 39, 6660(2021).

    [113] D. Barrera, V. Finazzi, J. Villatoro, S. Sales, V. Pruneri. Performance of a high-temperature sensor based on regenerated fiber Bragg gratings. Proc. SPIE, 7753, 775381(2011).

    [114] V. R. Mamidi, S. Kamineni, L. N. S. P. Ravinuthala, V. Thumu, V. R. Pachava. Characterization of encapsulating materials for fiber Bragg grating-based temperature sensors. Fiber Integr. Opt., 33, 325(2014).

    [115] B. A. Wilson, C. M. Petrie, T. E. Blue. High-temperature effects on the light transmission through sapphire optical fiber. J. Am. Ceram. Soc., 101, 3452(2018).

    [116] S. Yang, D. Homa, H. Heyl, L. Theis, J. Beach, B. Dudding, G. Acord, D. Taylor, G. Pickrell, A. Wang. Application of Sapphire-Fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors, 19, 3211(2019).

    [117] A. Inoue. Fabrication and application of fiber Bragg grating: a review. Optoelectron. Dev. Technol., 10, 119(1995).

    [118] S. Gupta, T. Mizunami, T. Yamao, T. Shimomura. Fiber Bragg grating cryogenic temperature sensors. Appl. Opt., 35, 5202(1996).

    [119] V. P. Wnuk, A. Méndez, S. Ferguson, T. Graver. Process for mounting and packaging of fiber Bragg grating strain sensors for use in harsh environment applications. Proc. SPIE, 5758, 46(2005).

    [120] R. H. Selfridge, S. M. Schultz, T. L. Lowder, V. P. Wnuk, A. Méndez, S. Ferguson, T. Graver. Packaging of surface relief fiber Bragg gratings for use as strain sensors at high temperature. Proc. SPIE, 6167, 616702(2006).

    [121] W. Li, Y.-W. Li, X.-D. Han, G.-Q. Yu. The study of enhancing temperature sensitivity for FBG temperature sensor. International Conference on Machine Learning and Cybernetics, 2746(2009).

    [122] M. Fisser, R. A. Badcock, P. D. Teal, S. Janssens, A. Hunze. Palladium-based hydrogen sensors using fiber Bragg gratings. J. Lightwave Technol., 36, 850(2018).

    [123] L. Yang, Y. Chen, Z. Xu, H. Xia, T. Natuski, Y. Xi, Q. Ni. Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties. Carbon, 204, 377(2023).

    [124] S. D. V. S. Jagannadha Raju, S. M. Haque, B. K. Goud, R. De, J. S. Misal, K. D. Rao. Fiber Bragg grating sensor for in situ substrate temperature measurement in a magnetron sputtering system. Phys. Scr., 97, 095505(2022).

    [125] Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, P. Huang. Optical fiber hydrogen sensor based on evaporated Pt/WO3 film. Sens. Actuators B, 206, 564(2015).

    [126] X. Zhou, Y. Dai, F. Liu, M. Yang. Highly sensitive and rapid FBG hydrogen sensor using Pt-WO3 with different morphologies. IEEE Sens. J., 18, 2652(2018).

    [127] D. A. Pinnow, G. D. Robertson, J. A. Wysocki. Reductions in static fatigue of silica fibers by hermetic jacketing. Appl. Phys. Lett., 34, 17(1979).

    [128] G. Bubel, J. T. Krause, B. Bickta, R. Ku. Mechanical reliability of metallized optical fiber for hermetic terminations. Optical Fiber Communication Conference, WA5(1989).

    [129] J. E. Watson, G. A. Shreve, M. N. Miller, D. Stevens, C. Sykora, D. LaBella, K. Ostby, W. K. Smith. Electroless plating of optical fibers for hermetic feedthrough seals. 50th Electronic Components and Technology Conference, 250(2000).

    [130] S. Sandlin, T. Kinnunen, J. Rämö, M. Sillanpää. A simple method for metal re-coating of optical fibre Bragg gratings. Surf. Coat. Technol., 201, 3061(2006).

    [131] S. Sandlin, T. Kosonen, A. Hokkanen, L. Heikinheimo. Use of brazing technique for manufacturing of high temperature fibre optical temperature and displacement transducer. Mater. Sci. Technol., 23, 1249(2007).

    [132] M. S. Müller, L. Hoffmann, T. Lautenschlager, A. W. Koch. Soldering fiber Bragg grating sensors for strain measurement. 19th International Conference on Optical Fibre Sensors, 61(2008).

    [133] Y.-L. Wang, Y. Tu, S.-T. Tu. Development of highly-sensitive and reliable fiber Bragg grating temperature sensors with gradient metallic coatings for cryogenic temperature applications. IEEE Sens. J., 21, 4652(2021).

    [134] J. Liang, Y. Yu, Q. Bian, W. Xu, Z. Wang, S. Zhang, J. Weng, J. Zhu, Y. Chen, X. Hu, J. Yang, Z. Zhang. Metal-coated high-temperature strain optical fiber sensor based on cascaded air-bubble FPI-FBG structure. Opt. Express, 31, 16795(2023).

    [135] R. O. Claus, C. E. Lee, J. J. Alcoz, W. N. Gibler, R. A. Atkins, H. F. Taylor, E. Udd. Method for embedding optical fibers and optical fiber sensors in metal parts and structures. Proc. SPIE, 1588, 110(1991).

    [136] G. Lin, L. Wang, C. Yang, M. Shih, T. Chuang. Thermal performance of metal-clad fiber Bragg grating sensors. IEEE Photon. Technol. Lett., 10, 406(1998).

    [137] Q. Bian, C. Bauer, A. Stadler, F. Buchfellner, M. Jakobi, W. Volk, A. W. Koch, J. Roths. Monitoring strain evolution and distribution during the casting process of AlSi9Cu3 alloy with optical fiber sensors. J. Alloys Compd., 935, 168146(2023).

    [138] Q. Bian, A. Podhrazsky, C. Bauer, A. Stadler, F. Buchfellner, R. Kuttler, M. Jakobi, W. Volk, A. W. Koch, J. Roths. Temperature and external strain sensing with metal-embedded optical fiber sensors for structural health monitoring. Opt. Express, 30, 33449(2022).

    [139] Y. Guo, L. Xiong, H. Liu. Research on the durability of metal-packaged fiber Bragg grating sensors. IEEE Photon. Technol. Lett., 31, 525(2019).

    [140] J. Lei, Q. Zhang, Y. Song, J. Tang, J. Tong, F. Peng, H. Xiao. Laser-assisted embedding of all-glass optical fiber sensors into bulk ceramics for high-temperature applications. Opt. Laser Technol., 128, 106223(2020).

    [141] J. Mathew, C. Hauser, P. Stoll, C. Kenel, D. Polyzos, D. Havermann, W. N. MacPherson, D. P. Hand, C. Leinenbach, A. Spierings, K. Koenig-Urban, R. R. J. Maier. Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applications. IEEE Sens. J., 17, 4107(2017).

    [142] A. Ghazanfari, W. Li, M. C. Leu, Y. Zhuang, J. Huang. Advanced ceramic components with embedded sapphire optical fiber sensors for high temperature applications. Mater. Des., 112, 197(2016).

    [143] Y. Zhang, L. Zhu, F. Luo, M. Dong, R. Yang, W. He, X. Lou. Comparison of metal-packaged and adhesive-packaged fiber Bragg grating sensors. IEEE Sens. J., 16, 5958(2016).

    [144] A. Hehr, M. Norfolk, J. Wenning, J. Sheridan, P. Leser, P. Leser, J. A. Newman. Integrating fiber optic strain sensors into metal using ultrasonic additive manufacturing. JOM, 70, 315(2018).

    [145] C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, I. Bennion. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation. Meas. Sci. Technol., 20, 034013(2009).

    [146] X. Li, J. Johnson, J. Groza, F. Prinz. Processing and microstructures of fiber Bragg grating sensors embedded in stainless steel. Metall. Mater. Trans. A, 33, 3019(2002).

    [147] H. Alemohammad, E. Toyserkani. Metal embedded optical fiber sensors: laser-based layered manufacturing procedures. J. Manuf. Sci. Eng., 133, 031015(2011).

    [148] R. Zou, X. Liang, R. Cao, S. Li, A. To, P. Ohodnicki, M. Buric, K. Chen. Optical fiber sensor-fused additive manufacturing and its applications in residual stress measurements. CLEO: Applications and Technology, AW1B.2(2017).

    [149] S. I. Kim, H. Y. Jung, S. Yang, J. Yoon, H. Lee, W. Ryu. 3D printing of a miniature turbine blade model with an embedded fibre Bragg grating sensor for high-temperature monitoring. Virtual Phys. Prototyp., 17, 156(2022).

    [150] C. Zhang, H. Yu, D. Sun, W. Liu. Ultrasonic additive manufacturing of metallic materials. Metals, 12, 1912(2022).

    [151] R. Dehoff, S. Babu. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater., 58, 4305(2010).

    [152] C. Y. Kong, R. C. Soar, P. M. Dickens. Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos. Struct., 66, 421(2004).

    [153] Y. Li, W. Liu, Y. Feng, H. Zhang. Ultrasonic embedding of nickel-coated fiber Bragg grating in aluminum and associated sensing characteristics. Opt. Fiber Technol., 18, 7(2012).

    [154] Y. Zhang, L. Zhu, F. Luo, M. Dong, X. Ding, W. He. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding. Opt. Eng., 55, 067103(2016).

    [155] J. J. Schomer, M. J. Dapino. High temperature characterization of fiber bragg grating sensors embedded into metallic structures through ultrasonic additive manufacturing. Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems(2017).

    [156] C. M. Petrie, N. Sridharan, M. Subramanian, A. Hehr, M. Norfolk, J. Sheridan. Embedded metallized optical fibers for high temperature applications. Smart Mater. Struct., 28, 055012(2019).

    [157] H. C. Hyer, D. C. Sweeney, C. M. Petrie. Functional fiber-optic sensors embedded in stainless steel components using ultrasonic additive manufacturing for distributed temperature and strain measurements. Addit. Manuf., 52, 102681(2022).

    [158] M. Xu, J. Archambault, L. Reekie, J. Dakin. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electron. Lett., 30, 1085(1994).

    [159] P. Zhang, H. Yang, Y. Wang, H. Liu, K. S. Lim, D. S. Gunawardena, H. Ahmad. Strain measurement at temperatures up to 800°C using regenerated gratings produced in the high Ge-doped and B/Ge co-doped fibers. Appl. Opt., 56, 6073(2017).

    [160] H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, H. Ahmad. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sens. Actuators A, 248, 199(2016).

    [161] Y. Wang, H. Bao, Z. Ran, J. Huang, S. Zhang. Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature. Appl. Opt., 56, 4250(2017).

    [162] T. Yang, Z. Ran, X. He, Z. Li, Z. Xie, Y. Wang, Y. Rao, X. Qiao, Z. He, P. He, Y. Yang, F. Min. Temperature-compensated multifunctional all-fiber sensors for precise strain/high-pressure measurement. J. Lightwave Technol., 37, 4634(2019).

    [163] K. Naeem, Y. Chung, B. H. Kim. Cascaded two-core PCFs-based in-line fiber interferometer for simultaneous measurement of strain and temperature. IEEE Sens. J., 19, 3322(2019).

    [164] Q. Yan, W. Liu, S. Duan, C. Sun, S. Zhang, Z. Han, X. Jin, L. Zhao, T. Geng, W. Sun, L. Yuan. A cascade structure made by two types of gratings for simultaneous measurement of temperature and strain. Opt. Fiber Technol., 42, 105(2018).

    [165] K. Markowski, K. Jedrzejewski, M. Marzecki, T. Osuch. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement. Opt. Lett., 42, 1464(2017).

    [166] B. Hopf, F. J. Dutz, T. Bosselmann, M. Willsch, A. W. Koch, J. Roths. Iterative matrix algorithm for high precision temperature and force decoupling in multi-parameter FBG sensing. Opt. Express, 26, 12092(2018).

    [167] F. Buchfellner, Q. Bian, W. Hu, X. Hu, M. Yang, A. W. Koch, J. Roths. Temperature-decoupled hydrogen sensing with Pi-shifted fiber Bragg gratings and a partial palladium coating. Opt. Lett., 48, 73(2023).

    [168] M. Song, S. B. Lee, S. S. Choi, B. Lee. Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube. Opt. Fiber Technol., 3, 194(1997).

    [169] Q. Tian, G. Xin, K.-S. Lim, Y. He, J. Liu, H. Ahmad, X. Liu, H. Yang. Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions. Opt. Express, 28, 30478(2020).

    [170] S. Sarkar, D. Inupakutika, M. Banerjee, M. Tarhani, M. Shadaram. Machine learning methods for discriminating strain and temperature effects on FBG-based sensors. IEEE Photon. Technol. Lett., 33, 876(2021).

    [171] K. Dey, N. Vangety, S. Roy. Machine learning approach for simultaneous measurement of strain and temperature using FBG sensor. Sens. Actuators A, 333, 113254(2022).

    [172] C. Deng, M. Yu, L. Zhu, J. Xia, M. Dong. A deep learning algorithm ADPNet for strain and temperature decoupling of fiber Bragg gratings. Opt. Fiber Technol., 79, 103356(2023).

    [173] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, A. Wang. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers. Opt. Lett., 35, 619(2010).

    [174] C. Du, W. Xie, S. Meng, Y. Yin, L. Jiao, L. Song. The connection technology based on high temperature silica fiber optic sensor. Proc. SPIE, 8345, 83452X(2012).

    [175] P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato. Sapphire-derived all-glass optical fibres. Nat. Photonics, 6, 627(2012).

    [176] T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, H. Bartelt. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Opt. Express, 22, 26825(2014).

    [177] B. A. Wilson, T. E. Blue. Creation of an internal cladding in sapphire optical fiber using the 6Li(n, α)3H reaction. IEEE Sens. J., 17, 7433(2017).

    [178] Q. Guo, Z. Jia, X. Pan, S. Liu, Z. Tian, Z. Zheng, C. Chen, G. Qin, Y. Yu. Sapphire-derived fiber Bragg gratings for high temperature sensing. Crystals, 11, 946(2021).

    [179] Q. Guo, S. Liu, X. Pan, B. Wang, Z. Tian, C. Chen, Q. Chen, Y. Yu, H. Sun. Femtosecond laser inscribed helical sapphire fiber Bragg gratings. Opt. Lett., 46, 4836(2021).

    [180] M. Wang, P. S. Salter, F. P. Payne, A. Shipley, S. M. Morris, M. J. Booth, J. A. Fells. Single-mode sapphire fiber Bragg grating. Opt. Express, 30, 15482(2022).

    [181] J. T. Jones, A. Birri, T. E. Blue, D. Kominsky, K. McCary, O. J. Ohanian, S. D. Rountree. Light propagation considerations for internally clad sapphire optical fiber using the 6Li(n,α)3H reaction. J. Lightwave Technol., 40, 1181(2022).

    [182] Q. Bian, H. Zhu, J. Liang, Y. Yu, P. Yan. High-order modes suppression in sapphire fiber Bragg gratings based on mode field matching fusion splicing for single-mode demodulation systems. IEEE Sens. J., 23, 16953(2023).

    [183] S. Bera, B. Liu, Y. N. Picard, B. Howard, M. Buric, P. Ohodnicki. Fabrication and evaluation of sol-gel derived magnesium aluminate spinel-clad sapphire fiber. Opt. Fiber Technol., 68, 102801(2022).

    [184] X. Luan, R. Yu, Q. Zhang, S. Zhang, L. Cheng. Boron nitride coating of sapphire optical fiber for high temperature sensing applications. Surf. Coat. Technol., 363, 203(2019).

    [185] J. Wang, E. M. Lally, X. Wang, J. Gong, G. Pickrell, A. Wang. ZrO2 thin-film-based sapphire fiber temperature sensor. Appl. Opt., 51, 2129(2012).

    [186] S. Chen, Q. Zhang, X. Luan, R. Yu, Q. Zhang, S. Zhang, L. Cheng. Sapphire optical fiber with SiBCN coating prepared by chemical vapor deposition for high-temperature sensing applications. Thin Solid Films, 709, 138242(2020).

    [187] H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, B. T. Chorpening. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev., 5, 011102(2018).

    [188] Q. Bian, H. Zhu, J. Liang, Y. Yu, P. Yan. High-order modes suppression in sapphire fiber Bragg gratings based on mode field matching fusion splicing for single-mode demodulation systems. IEEE Sens. J., 23, 16953(2023).

    Wenjie Xu, Qiang Bian, Jianqiao Liang, Zhencheng Wang, Yang Yu, Zhou Meng, "Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]," Chin. Opt. Lett. 21, 090007 (2023)
    Download Citation