• Chinese Optics Letters
  • Vol. 21, Issue 9, 090007 (2023)
Wenjie Xu1, Qiang Bian2,3,4, Jianqiao Liang1, Zhencheng Wang1..., Yang Yu1,* and Zhou Meng4|Show fewer author(s)
Author Affiliations
  • 1Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • 2Photonics Laboratory, Munich University of Applied Sciences, Munich 80335, Germany
  • 3Institute for Measurement and Sensor Technology, Technical University of Munich, Munich 80333, Germany
  • 4College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202321.090007 Cite this Article Set citation alerts
    Wenjie Xu, Qiang Bian, Jianqiao Liang, Zhencheng Wang, Yang Yu, Zhou Meng, "Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]," Chin. Opt. Lett. 21, 090007 (2023) Copy Citation Text show less
    (a) Peak power, wavelength shift and (b) reflection spectra of an RFBG/R2FBG with increasing temperature[42].
    Fig. 1. (a) Peak power, wavelength shift and (b) reflection spectra of an RFBG/R2FBG with increasing temperature[42].
    Experimental photograph of liquid sodium temperature measurement using RFBG sensor[38].
    Fig. 2. Experimental photograph of liquid sodium temperature measurement using RFBG sensor[38].
    Photograph of the combustion chamber flame tube arrangement of Type-II FBG array temperature probe[51].
    Fig. 3. Photograph of the combustion chamber flame tube arrangement of Type-II FBG array temperature probe[51].
    (a) Photograph of SFBG structure; (b) reflection spectrum of SFBG at room temperature[16].
    Fig. 4. (a) Photograph of SFBG structure; (b) reflection spectrum of SFBG at room temperature[16].
    Schematic diagram of the temperature distribution inside an inductively heated furnace using SFBG scanning[58].
    Fig. 5. Schematic diagram of the temperature distribution inside an inductively heated furnace using SFBG scanning[58].
    (a) Schematic diagram of SFBG sensor; (b) physical image of the sensor[59].
    Fig. 6. (a) Schematic diagram of SFBG sensor; (b) physical image of the sensor[59].
    (a) Schematic diagram of the FPI structure; (b) SEM top view; (c) SEM cross-sectional view of the FPI structure[87].
    Fig. 7. (a) Schematic diagram of the FPI structure; (b) SEM top view; (c) SEM cross-sectional view of the FPI structure[87].
    Optical fiber sensor based on HC-PCF. (a) Schematic diagram of the sensor structure; (b) reflection spectra under different temperatures varying from 200°C to 1200°C[88].
    Fig. 8. Optical fiber sensor based on HC-PCF. (a) Schematic diagram of the sensor structure; (b) reflection spectra under different temperatures varying from 200°C to 1200°C[88].
    Schematic diagram of sensor probe structure[95].
    Fig. 9. Schematic diagram of sensor probe structure[95].
    Physical image of RFBG sensor encapsulated in alumina ceramic tube and Ni alloy shell[113].
    Fig. 10. Physical image of RFBG sensor encapsulated in alumina ceramic tube and Ni alloy shell[113].
    Physical image of SFBG array encapsulated with sapphire tube[116].
    Fig. 11. Physical image of SFBG array encapsulated with sapphire tube[116].
    Physical image of Ni-coated RFBG sensor encapsulated on steel substrate[104].
    Fig. 12. Physical image of Ni-coated RFBG sensor encapsulated on steel substrate[104].
    Schematic diagram of SFBG sensors protected by metal tubes encapsulated onto a steel plate[103].
    Fig. 13. Schematic diagram of SFBG sensors protected by metal tubes encapsulated onto a steel plate[103].
    Schematic diagram of stainless-steel substrate encapsulated Type-II FBG three-parameter sensor[105].
    Fig. 14. Schematic diagram of stainless-steel substrate encapsulated Type-II FBG three-parameter sensor[105].
    (a) Physical image of the Ni-coated fiber after plating; (b) cross section of the Ni-coated fiber[109].
    Fig. 15. (a) Physical image of the Ni-coated fiber after plating; (b) cross section of the Ni-coated fiber[109].
    Physical image of the Ti-Cu-coated FBG temperature sensor[133].
    Fig. 16. Physical image of the Ti-Cu-coated FBG temperature sensor[133].
    Physical image of the Ni-coated FBG-FPI high-temperature strain sensors[134].
    Fig. 17. Physical image of the Ni-coated FBG-FPI high-temperature strain sensors[134].
    Fiber-embedded aluminum specimen. (a) Physical image; (b) schematic diagram; (c) microscope image of the cross section where the fiber was in direct contact with the aluminum alloy[138].
    Fig. 18. Fiber-embedded aluminum specimen. (a) Physical image; (b) schematic diagram; (c) microscope image of the cross section where the fiber was in direct contact with the aluminum alloy[138].
    (a) Physical image of the embedded high-temperature sensor made by SLM; (b) schematic diagram of the embedded FPI sensor assembly[141].
    Fig. 19. (a) Physical image of the embedded high-temperature sensor made by SLM; (b) schematic diagram of the embedded FPI sensor assembly[141].
    Microscope picture of the cross section of the fiber IFPI sensor embedded by CO2 laser sintering[140].
    Fig. 20. Microscope picture of the cross section of the fiber IFPI sensor embedded by CO2 laser sintering[140].
    (a) Schematic diagram of turbine blade with an embedded Ni-FBG sensor fabricated by DED printing for high-temperature monitoring; (b) physical image of a fully DED-printed miniature turbine blade with an embedded Ni-FBG sensor[149].
    Fig. 21. (a) Schematic diagram of turbine blade with an embedded Ni-FBG sensor fabricated by DED printing for high-temperature monitoring; (b) physical image of a fully DED-printed miniature turbine blade with an embedded Ni-FBG sensor[149].
    (a) Physical image of metal-embedded FBG sensor on aluminum base; (b) optical micrograph of the cross section of the metal-encapsulated FBG sensor[154].
    Fig. 22. (a) Physical image of metal-embedded FBG sensor on aluminum base; (b) optical micrograph of the cross section of the metal-encapsulated FBG sensor[154].
    (a) Embedded compact tension specimen; (b) embedded high-temperature test piece[23].
    Fig. 23. (a) Embedded compact tension specimen; (b) embedded high-temperature test piece[23].
    Cu/Ni-plated fiber embedded in aluminum 6061-H18 substrate[156].
    Fig. 24. Cu/Ni-plated fiber embedded in aluminum 6061-H18 substrate[156].
    Schematic diagram of Li-6 carbonate/sapphire fiber structure[177].
    Fig. 25. Schematic diagram of Li-6 carbonate/sapphire fiber structure[177].
    Schematic diagram of the SDF-based F–P cavity structure[74].
    Fig. 26. Schematic diagram of the SDF-based F–P cavity structure[74].
    (a) Experimental setup of HSFBGs inscribed in a sapphire fiber; (b) HSFBG reflection and transmission spectra of multimode fiber coupling. The illustration is the reflection spectrum of HSFBG with SMF coupling[179].
    Fig. 27. (a) Experimental setup of HSFBGs inscribed in a sapphire fiber; (b) HSFBG reflection and transmission spectra of multimode fiber coupling. The illustration is the reflection spectrum of HSFBG with SMF coupling[179].
    (a) Microscope image of the SFBG; (b) SFBG reflection spectrum[180].
    Fig. 28. (a) Microscope image of the SFBG; (b) SFBG reflection spectrum[180].
    (a) Polished sapphire end face; (b) schematic of fusion bonding; (c) successful fusion; (d) failed fusion[181].
    Fig. 29. (a) Polished sapphire end face; (b) schematic of fusion bonding; (c) successful fusion; (d) failed fusion[181].
    (a) Microscope image of overlapped double conical splicing region between the sapphire fiber (Φ60 µm) and SMF-28e+; (b) SFBG reflection spectrum obtained by using pretapered SMF for splicing[182].
    Fig. 30. (a) Microscope image of overlapped double conical splicing region between the sapphire fiber (Φ60 µm) and SMF-28e+; (b) SFBG reflection spectrum obtained by using pretapered SMF for splicing[182].
    Fiber MaterialFBG TypeMaxStable
    SilicaType-I FBGs450°C[61]∼320°C
    RFBG1452°C[42]1350°C
    Type-II FBGs1000°C[50]1000°C
    SapphireSFBG1900°C[58]1500°C
    Table 1. Performance Comparison of FBG High-Temperature Sensors
    FPI TypeCharacteristicOperating TemperatureTemperature SensitivityOperating StrainYear
    IFPIDispersion compensation fiber (DCF)25°C–600°C68.6 pm/°C2009[62]
    Microstructured fiber (MF)24°C–1000°C17.7 pm/°C2013[63]
    Double-core photonic crystal fiber (DC-PCF)30°C–900°C13.9 pm/°C2014[64]
    PCF17°C–1200°C10 pm/°C2015[65]
    Microfiber (MF)25°C–1000°C13.6 pm/°C2018[66]
    No-core fiber (NCF)100°C–1100°C16.36 pm/°C (400°C)0–2000 µε2019[67]
    Polarization-maintaining PCF100°C–1000°C15.34 pm/°C2020[68]
    PCF25°C–1000°C16.12 nm/°C2021[69]
    Polarization-maintaining PCF50°C–900°C17.52 pm/°C (400°C)2021[70]
    EFPI100°C–700°C0.98 pm/°C0–800 µε2012[71]
    20°C–800°C0.59 pm/°C0–3700 µε2014[72]
    23°C–600°C12.3 pm/°C0–2104 µε2016[73]
    20°C–1000°C15.41 pm/°C0–1 000 µε2019[74]
    100°C–800°C10.74 pm/°C0–900 µε2020[75]
    26°C–1000°C6.98 pm/°C (800°C)0–350 µε2022[76]
    26°C–700°C12.715 pm/°C2022[77]
    24°C–900°C12.8 pm/°C0–210 µε2023[78]
    Table 2. Performance Comparison of IFPI and EFPI
    Fiber MaterialStructureOperating TemperatureTemperature Sensitivity Sensing PerformanceYear
    SilicaSMF coated with TiO2 film26°C–108°C1.53 rad/°C1991[85]
    PCF-HCF-SMF50°C–1000°C2008[86]
    Groove micromachined by femtosecond laser0°C–1100°C0.074 pm/°C2008[87]
    Microcavity fabricated by femtosecond laser50°C–800°C0.59 pm/°C2014[72]
    SMF-HC-PCF200°C–1200°C15.68 pm/°C2019[88]
    SapphireSMF-SF-PCF310°C–976°C1.26 rad°C-1 mm-11992[93]
    45° SF-sapphire wafer24°C–1170°C1.524–2.322 nm/°C2006[94]
    SF-sapphire wafer100°C–1080°C4.786 nm/°C2019[95]
    SF-air cavity-sapphire wafer0°C–1455°C1.32–2.45 nm/°C2020[96]
    Table 3. Performance Comparison of FPI High-Temperature Sensors
    YearMetal-Embedded EncapsulationOptical Fiber Sensor Embedding MethodsOperating TemperatureApplications
    2006[130]ElectroplatingElectroless plating and electroplatingUp to 600°CHigh-temperature and harsh environments
    2007[131]Electroless plating, electroplating and brazingUp to 600°CStrain monitoring in high temperature environments
    2008[132]Conductive lacquer, electroplating and brazingQuasi-static strain measurement
    2014[111]Magnetron sputtering and electroplatingCarbon steel structure corrosion monitoring
    2021[133]Magnetron sputtering and electroplating–194°C–20°CTemperature measurements or temperature compensation in cryogenic engineering
    2023[134]Electroless plating and electroplatingUp to 545°CHigh temperature strain structural health monitoring
    1991[135]CastingCasting aluminum< 200°CMonitoring and mechanical system
    2018-2023[31,137]Casting aluminum/CuUp to 650°CStructural health monitoring of metallic structures
    2002[146]Laser additive manufacturingMagnetron sputtering, electroplating and LASDM0°C–400°CStructural health monitoring stainless steel structures
    2011[147]Electroplating and LSFF32.2°C–121.7°CStructural analysis of machining tools
    2015[24]RF sputtering, electroplating and SLM100°C–400°CIn situ strain and temperature measurements inside components
    2017[148]Electroplating and LENSMeasuring residual stress in additive manufacturing processes
    2017[141]Electroless plating, electroplating and SLMUp to 1000°CExtreme environment high temperature sensing
    2020[140]CO2 laser sintering technologyUp to 800°CStructural high temperature and thermal strain monitoring
    2022[149]Magnetron sputtering, electroplating and DED100°C–500°CTurbine blade structural health monitoring
    2012[153]UAMElectroless plating, electroplating and UW20°C–300°CUW embedding processes
    2016[154]UW50°C–200°CLong-term and high-precision structural health monitoring
    2017[155]UAMUp to 450°CStructural health monitoring of metallic structures
    2019[23]UAMUp to 300°CDetection of crack initiation and growth
    2019[156]UAMUp to 500°CStructural health monitoring in harsh and high-temperature environments
    2022[157]UAM∼100°CDistributed temperature and strain monitoring of nuclear reactors
    Table 4. Overview of Metal-Embedded Optical Fiber Sensor Embedding Methods and Applications
    Wenjie Xu, Qiang Bian, Jianqiao Liang, Zhencheng Wang, Yang Yu, Zhou Meng, "Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]," Chin. Opt. Lett. 21, 090007 (2023)
    Download Citation