• Acta Optica Sinica
  • Vol. 38, Issue 8, 0815007 (2018)
Peipei Zhou1、2、3、4、*, Qinghai Ding1、5、*, Haibo Luo1、3、4, and Xinglin Hou1、2、3、4
Author Affiliations
  • 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016
  • 2 University of Chinese Academy of Sciences, Beijing 100049
  • 3 Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang, Liaoning 110016
  • 4 Key Laboratory of Image Understanding and Computer Vision, Shenyang, Liaoning 110016
  • 5 Space Star Technology Co., Ltd., Beijing 100086
  • show less
    DOI: 10.3788/AOS201838.0815007 Cite this Article Set citation alerts
    Peipei Zhou, Qinghai Ding, Haibo Luo, Xinglin Hou. Anomaly Detection and Location in Crowded Surveillance Videos[J]. Acta Optica Sinica, 2018, 38(8): 0815007 Copy Citation Text show less
    References

    [1] Cong Y, Yuan J, Liu J. Sparse reconstruction cost for abnormal event detection[C]. 2011 IEEE Conference on Computer Vision and Pattern Recognition, 3449-3456(2011).

    [2] Sodemann A A, Ross M P, Borghetti B J. A review of anomaly detection in automated surveillance[J]. IEEE Transactions on Systems Man and Cybernetics Part C, 42, 1257-1272(2012). http://ieeexplore.ieee.org/document/6392472/

    [3] Hämäläinen W, Nykänen M. Efficient discovery of statistically significant association rules[C]. 8th IEEE International Conference on Data Mining, 203-212(2008).

    [4] Kuettel D, Breitenstein M D, Gool L V et al. What's going on? Discovering spatio-temporal dependencies in dynamic scenes[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1951-1958(2010).

    [5] Amraee S, Vafaei A, Jamshidi K et al. Anomaly detection and localization in crowded scenes using connected component analysis[J]. Multimedia Tool sand Applications, 77, 14767-14782(2018). http://link.springer.com/article/10.1007/s11042-017-5061-7

    [6] Yuan Y, Feng Y, Lu X. Statisticalhy pothesis detector for abnormal event detection in crowded scenes[J]. IEEE Transactions on Cybernetics, 47, 3597-3608(2017).

    [7] Kwon J, Lee K M. A unified framework for event summarization and rare event detection from multiple views[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37, 1737-1750(2015). http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247810

    [8] Lee K M. A unified framework for event summarization and rare event detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1266-1273(2012).

    [9] Wang X, Hou Z Q, Yu W S et al. Target scale adaptive robust tracking based on fusion of multilayer convolutional features[J]. Acta Optica Sinica, 37, 1115005(2017).

    [10] Zhou S, Shen W, Zeng D et al. Unusual event detection in crowded scenes by trajectory analysis[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 1300-1304(2015).

    [11] Zhou P P, Ding Q H, Luo H B et al. Trajectory outlier detection based on DBSCAN clustering algorithm[J]. Infrared and laser Engineering, 46, 0528001(2017).

    [12] Tran D, Yuan J, Forsyth D. Video event detection: from subvolume localization to spatiotemporal path search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 404-416(2014). http://www.ncbi.nlm.nih.gov/pubmed/24356358

    [13] Nguyen N T, Phung D Q, Venkatesh S et al. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models[C]. IEEE Conference on Computer Vision and Pattern Recognition, 955-960(2005).

    [14] Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model[C]. IEEE Conference on Computer Vision and Pattern Recognition, 935-942(2009).

    [15] Lee D G, Suk H I, Lee S W. Crowd behavior representation using motion influence matrix for anomaly detection[C]. 2nd IAPR Asian Conference on Pattern Recognition, 110-114(2013).

    [16] Chen T, Hou C, Wang Z et al. Anomaly detection in crowded scenes using motion energy model[J]. Multimedia Tools and Applications, 77, 14137-14152(2018). http://link.springer.com/10.1007/s11042-017-5020-3

    [17] Hu X, Hu S, Luo L et al. Abnormal event detection in crowded scenes via bag-of-atomic-events-based topic model[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 24, 2638-2653(2016). http://www.researchgate.net/publication/301488143_Abnormal_event_detection_in_crowded_scenes_via_bag-of-atomic-events-based_topic_model

    [18] Reddy V, Sanderson C, Lovell B C. Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 55-61(2013).

    [19] Li W, Mahadevan V, Vasconcelos N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 36, 18-32(2014). http://dl.acm.org/citation.cfm?id=2554012

    [20] Zhang Y, Lu H, Zhang L et al. Combining motion and appearance cues for anomaly detection[J]. Pattern Recognition, 51, 443-452(2016). http://www.sciencedirect.com/science/article/pii/S0031320315003362

    [21] Sabokrou M, Fathy M, Moayed Z et al. Fast and accurate detection and localization of abnormal behavior in crowded scenes[J]. Machine Vision and Applications, 28, 965-985(2017). http://link.springer.com/article/10.1007/s00138-017-0869-8

    [22] Sabokrou M, Fayyaz M, Fathy M et al. Deep-cascade:cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Image Processing, 26, 1992-2004(2017).

    [23] Zhou S, Shen W, Zeng D et al. Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes[J]. Signal Processing: Image Communication, 47, 358-368(2016).

    [24] Bao T, Karmoshi S, Ding C et al. Abnormal event detection and localization in crowded scenes based on PCANet[J]. Multimedia Tools and Applications, 76, 23213-23224(2017). http://link.springer.com/10.1007/s11042-016-4100-0

    [25] Feng Y, Yuan Y, Lu X. Learning deep event models for crowd anomaly detection[J]. Neurocomputing, 219, 548-556(2017). http://dl.acm.org/citation.cfm?id=3033799.3034109

    [26] UC San Diego[2018-01-22]. Statistical visual computing lab [2018-01-22].http:∥www.svcl.ucsd.edu/projects/anomaly..

    [28] Barnich O, Droogenbroeck M V. ViBE: a powerful random technique to estimate the background in video sequences[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 945-948(2009).

    [29] Zach C, Pock T, Bischof H. A duality based approach for realtime TV-L1, optical flow [C]. 29th DAGM Conference on Pattern Recognition, Springer-Verlag, 214-223(2007).

    [30] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 886-893(2005).

    [31] Schölkopf B, Platt J C, Shawe-Taylor J et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 13, 1443(2001). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6790022

    [32] Mahadevan V, Li W, Bhalodia V et al. Anomaly detection in crowded scenes[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1975-1981(2010).

    [33] Helbing D, Molnar P. Social force model for pedestrian dynamics[J]. Physical Review E, 51, 4282(1995). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000051000005004282000001&idtype=cvips&gifs=Yes

    [34] Kim J, Grauman K. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2921-2928(2009).

    Peipei Zhou, Qinghai Ding, Haibo Luo, Xinglin Hou. Anomaly Detection and Location in Crowded Surveillance Videos[J]. Acta Optica Sinica, 2018, 38(8): 0815007
    Download Citation