• Photonics Research
  • Vol. 11, Issue 3, 463 (2023)
Shanna Du1、2、†, Pu Wang1、2、3、†, Jianqiang Liu1、2, Yan Tian1、2, and Yongmin Li1、2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3School of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.475943 Cite this Article Set citation alerts
    Shanna Du, Pu Wang, Jianqiang Liu, Yan Tian, Yongmin Li. Continuous variable quantum key distribution with a shared partially characterized entangled source[J]. Photonics Research, 2023, 11(3): 463 Copy Citation Text show less
    References

    [1] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [3] H.-K. Lo, M. Curty, K. Tamaki. Secure quantum key distribution. Nat. Photonics, 8, 595-604(2014).

    [4] S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 77, 513-577(2005).

    [5] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [6] E. Diamanti, H.-K. Lo, B. Qi, Z. Yuan. Practical challenges in quantum key distribution. NPJ Quantum Inf., 2, 16025(2016).

    [7] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [8] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).

    [9] T. C. Ralph. Continuous variable quantum cryptography. Phys. Rev. A, 61, 010303(1999).

    [10] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 421, 238-241(2003).

    [11] A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, P. K. Lam. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett., 95, 180503(2005).

    [12] J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, P. Grangier. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 76, 042305(2007).

    [13] B. Qi, L.-L. Huang, L. Qian, H.-K. Lo. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A, 76, 052323(2007).

    [14] L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, U. L. Andersen. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun., 3, 1083(2012).

    [15] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [16] H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, P. K. Lam. Measurement-based noiseless linear amplification for quantum communication. Nat. Photonics, 8, 333-338(2014).

    [17] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, U. L. Andersen. High-rate measurement-device-independent quantum cryptography. Nat. Photonics, 9, 397-402(2015).

    [18] T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, R. Schnabel. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun., 6, 8795(2015).

    [19] N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, P. K. Lam. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 3, 634-642(2016).

    [20] D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, G. Zeng. Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett., 41, 3511-3514(2016).

    [21] X. Wang, W. Liu, P. Wang, Y. Li. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A, 95, 062330(2017).

    [22] S. Du, Y. Tian, Y. Li. Impact of four-wave-mixing noise from dense wavelength-division-multiplexing systems on entangled-state continuous-variable quantum key distribution. Phys. Rev. Appl., 14, 024013(2020).

    [23] B. Qi, H. Gunther, P. G. Evans, B. P. Williams, R. M. Camacho, N. A. Peters. Experimental passive-state preparation for continuous-variable quantum communications. Phys. Rev. Appl., 13, 054065(2020).

    [24] Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, H. Guo. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 125, 010502(2020).

    [25] Y. Tian, P. Wang, J. Liu, S. Du, W. Liu, Z. Lu, X. Wang, Y. Li. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica, 9, 492-500(2022).

    [26] C. Weedbrook. Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A, 87, 022308(2013).

    [27] Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, G. Zeng. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A, 95, 032304(2017).

    [28] Q. Liao, G. Xiao, C.-G. Xu, Y. Xu, Y. Guo. Discretely modulated continuous-variable quantum key distribution with an untrusted entanglement source. Phys. Rev. A, 102, 032604(2020).

    [29] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, A. J. Shields. A quantum access network. Nature, 501, 69-72(2013).

    [30] R. Ursin, R. Hughes. Sharing quantum secrets. Nature, 501, 37-38(2013).

    [31] H.-K. Lo, H. Chau, M. Ardehali. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol., 18, 133-165(2005).

    [32] V. C. Usenko, F. Grosshans. Unidimensional continuous-variable quantum key distribution. Phys. Rev. A, 92, 062337(2015).

    [33] H. Liu, W. Wang, K. Wei, X.-T. Fang, L. Li, N.-L. Liu, H. Liang, S.-J. Zhang, W. Zhang, H. Li, L. You, Z. Wang, H.-K. Lo, T.-Y. Chen, F. Xu, J.-W. Pan. Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett., 122, 160501(2019).

    [34] X. Guo, C. Xie, Y. Li. Generation and homodyne detection of continuous-variable entangled optical beams with a large wavelength difference. Phys. Rev. A, 84, 020301(2011).

    [35] A. Leverrier, F. Grosshans, P. Grangier. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A, 81, 062343(2010).

    [36] H. Qin, R. Kumar, R. Alléaume. Quantum hacking: saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A, 94, 012325(2016).

    [37] H. Qin, R. Kumar, V. Makarov, R. Alléaume. Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A, 98, 012312(2018).

    [38] P. Jouguet, S. Kunz-Jacques, E. Diamanti. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A, 87, 062313(2013).

    [39] X.-C. Ma, S.-H. Sun, M.-S. Jiang, L.-M. Liang. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A, 88, 022339(2013).

    [40] D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, M. Sarovar. Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X, 5, 041010(2015).

    [41] B. Qi, P. Lougovski, R. Pooser, W. Grice, M. Bobrek. Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X, 5, 041009(2015).

    [42] G. Zhang, J. Y. Haw, H. Cai, F. Xu, S. M. Assad, J. F. Fitzsimons, X. Zhou, Y. Zhang, S. Yu, J. Wu, W. Ser, L. C. Kwek, A. Q. Liu. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13, 839-842(2019).

    [43] C. Bruynsteen, M. Vanhoecke, J. Bauwelinck, X. Yin. Integrated balanced homodyne photonic-electronic detector for beyond 20 GHz shot-noise-limited measurements. Optica, 8, 1146-1152(2021).

    [44] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, R. Ursin. An entanglement-based wavelength-multiplexed quantum communication network. Nature, 564, 225-228(2018).

    Shanna Du, Pu Wang, Jianqiang Liu, Yan Tian, Yongmin Li. Continuous variable quantum key distribution with a shared partially characterized entangled source[J]. Photonics Research, 2023, 11(3): 463
    Download Citation