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Locking the sophisticated and expensive entanglement sources at the shared relay node is a promising choice for
building a star-type quantum network with efficient use of quantum resources, where the involved parties only
need to equip low-cost and simple homodyne detectors. Here, to our best knowledge, we demonstrate the first
experimental continuous variable quantum key distribution with an entanglement source between the two users.
We consider a practical partially characterized entangled source and establish the security analysis model of the
protocol under realistic conditions. By applying a biased base technology, the higher key rate than that of the
original protocol is achieved. The experimental results demonstrate that the distance between two users can reach
up to 60 km over telecom single-mode fiber, implying the feasibility for high-rate and secure communication with
a shared entangled source at metropolitan distances. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.475943

1. INTRODUCTION

Quantum key distribution (QKD) allows two distant parties to
distill a common secret key by exploring the fundamental
principles of quantum mechanics [1–3]. Different from the
discrete-variable (DV) QKD schemes, the continuous-variable
(CV) QKD [4–6] systems encode key information on the mul-
tiphoton quantum states and measure their quadratures using
high-efficiency homodyne (heterodyne) detectors instead of
single-photon detection technologies, which have potential
higher secret key rates at metropolitan distances. In the last
two decades, CV-QKD has received extensive attention [7,8],
and remarkable progress has been achieved both theoretically
and experimentally [9–25].

At present, most CV-QKD implementations are based on a
one-way regime, where one of the two parties (transmitter)
needs to establish a source, and the other (receiver) performs
detection. Placing the entanglement source between two users
offers an alternative route for secure communication with effi-
cient use of quantum resources [26–28]. Here, we demonstrate
the first experimental CV-QKD with entanglement source be-
tween the two users, which is suitable to develop an entangle-
ment-based CV-QKD network, where the sophisticated and
expensive entanglement source can be shared by multiple
end users [29,30]. The initial concept was introduced in

Ref. [26], proposing a scheme that allowed communicating
parties to achieve a secure key when the entanglement origi-
nates from the middle and, hence, is well suited to construct
a centric CV-QKD network with a shared entanglement source.
However, the challenge occurs due to the assumption that the
entangled source is perfectly pure and the homodyne detection
is ideal (quantum efficiency of 100% and no dark noises), which
is not suitable for the practical applications. Note that any real-
istic preparation process of Einstein–Podolsky–Rosen (EPR)
states inevitably introduces losses and excess noises, and no pure
EPR states can be produced in real scenarios.

In this work, we treat the entanglement source as a realistic
mixed EPR source and take the trusted losses and electronic
noises of the realistic detectors into account. We focus on a
practical consideration of a partially characterized source, where
the variances and correlations of the two output modes of the
source are known, and the output modes keep the character-
istics of Gaussian and independent and identical distribution
(i.i.d.), which can be verified by testing the output of the pre-
pared source. Note that the state preparation process does not
need to be characterized. This means that an attacker (Eve) is
able to acquire additional information by purifying the practical
mixed source while maintaining the output characteristics of
the source unchanged. A general security model under above
conditions is established, and an improved strategy for the
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secret key rate is proposed by using a biased base method.
Finally, we experimentally demonstrate the protocol over long
distance fibers, where the entanglement source is located at the
relay node, and the distance between two users can reach up to
60 km, providing the possibility for the deployment of high-
rate, cost-effective metropolitan quantum network.

2. PROTOCOL DESCRIPTION

The schematic of the protocol with entanglement source be-
tween the two users is illustrated in Fig. 1(a), which consists
of two legitimate users, Alice and Bob, and a relay, Charlie,
who prepares a mixed Gaussian EPR entangled state. Here,
the actual physical implementation model of the state prepara-
tion process does not need to be characterized and can be re-
garded as a black box. The two modes of the EPR source are
sent to Alice and Bob through two independent quantum chan-
nels and subsequently detected by homodyne detection. Due to
the Gaussian and i.i.d. EPR source, according to the optimality
of Gaussian attacks, the collective Gaussian attack is optimal for
Eve. Therefore, we do not require the channel linearity
assumption. By implementing parameter estimation, informa-
tion reconciliation, and privacy amplification procedures, the
secret keys can be extracted.

For convenience of security analysis, a purification scheme
of the protocol is given in Fig. 1(b). Here, we assume the mixed
EPR states are prepared by Eve, and that she can obtain addi-
tional information by purifying the mixed EPR source [14]. In
order to mask her attack, the characteristics of the EPR states
ρA0B0

remain intact. The two quantum channels are modeled
by their transmissions TA and TB and mixed with thermal
noises E1 and E2, which are extracted from a reservoir of en-
tangled ancillae and have quantum correlations. This joint two-
mode Gaussian attack is more powerful than two independent
collective Gaussian attacks (see Appendix B for more details).
At Alice’s and Bob’s sites, the realistic noisy detection is purified
by a beam splitter with one of the input ports injected with a
thermal state (one beam of an EPR state) followed by an ideal
detector. The transformation of the beam splitter is employed
to model the detection efficiency ηA (ηB), while the injected
EPR beam is used to model the electronic noise νelA (νelB).

Based on the above purification schemes, the secret key rate
can be estimated.

3. BIASED BASE

In the previous entanglement-based CV-QKD protocols, both
Alice and Bob randomly measure the amplitude or phase quad-
rature of one of the entangled modes with an equal probability
of 1/2. However, the secret key can only be extracted when
both parties choose the same quadrature measurement base.
Thus, they must discard half of the raw data after the base-
sifting procedure, which results in waste of quantum state
resources and low efficiency of the protocol. To improve
the secret key rate, we present a biased-base scheme for
entanglement-based CV-QKD similar to DV-QKD [31], in
which Alice and Bob choose their measurement bases with
nonuniform probability.

Suppose that Alice randomly chooses to implement a mea-
surement in the phase and amplitude quadratures with prob-
abilities PA and 1 − PA, respectively, and Bob measures the
phase and amplitude quadratures with probabilities PB and
1 − PB , respectively. To ensure security, Alice and Bob must
evaluate the key rate from two sifted measurement bases.
The secret key rate against collective attacks with reverse rec-
onciliation in the asymptotic limit is given by

K∞
RR � �1 − PA��1 − PB��βI xAB − χxBE ��PAPB�βI pAB − χpBE�,

(1)

where �1 − PA��1 − PB� and PAPB are the sifting efficiencies of
the two bases. β is the reconciliation efficiency. I xAB (I pAB) de-
notes the Shannon mutual information between Alice’s and
Bob’s data on the amplitude (phase) quadrature. χxBE and
χpBE denote the Holevo bound for the amplitude and phase
quadratures, respectively, putting the upper limit on the infor-
mation available to Eve on Bob’s sifted key. Using the purifi-
cation treatment, χx�p�BE can be obtained by

χx�p�BE � S�ρE � − S�ρx�p�E∕B� � S�ρA1B1
� − S�ρx�p�A1FG∕B�, (2)

where S�ρ� is the von Neumann entropy, which can be directly
calculated from the symplectic eigenvalues of the covariance
matrix of quantum states (see Appendix A for more details).

The key rate can be improved by optimizing the total sifting
efficiency PAPB � �1 − PA��1 − PB�, where PA, PB ∈ �0,1�.
When the probabilities PA and PB are equal to 1 or 0, the total
sifting efficiency reaches the maximum value. Note that PA and
PB cannot be set to 1 or 0, or the covariance matrix cannot be
accurately estimated due to the lack of nonobserved quadrature
data. To ensure security, the unknown parameters of the covari-
ance matrix must be constrained by the Heisenberg uncertainty
principle as the manipulation in the unidimensional CV-QKD
protocol [32], which results in a significant degradation of the
key rate. In our experiment, we chose PA � PB � P � 0.9,
which indicates that the phase quadratures are selected to be
observed for most of the time. Within this framework, the
key rate generated is 64% higher than that of the original un-
biased base protocol (see Appendix E for more details).

Fig. 1. Schematic illustration of CV-QKD protocol with partially
characterized entangled source between the two users. (a) Prepare-
and-measure (PM) scheme for protocol. (b) Equivalent purification
scheme for protocol. Hom, homodyne detection; QM, quantum
memory.
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4. EXPERIMENTAL DEMONSTRATION

A. Experimental Setup
In our experiment, we implement the protocol with an asym-
metric configuration, meaning that Charlie is located close to
one of the users, which provides better performance compared
with the near-symmetric channels (see Appendix D for details).
Note that such asymmetric configurations find widespread ap-
plications in practical QKD network setups [17,33].

A schematic of our experimental setup is shown in Fig. 2.
The EPR entanglement source is placed at Charlie’s site, which
consists of a nonlinear resonator with a periodically poled
KTiOPO4 crystal inside. The nonlinear resonator is bidirec-
tionally pumped by a 532 nm laser [34]. In the clockwise di-
rection, the resonator operates above threshold and outputs
bright downconversion fields that serve as the local oscillators
(LOs) of Alice’s and Bob’s balanced homodyne detectors
(BHD1 and BHD2), whereas in the anticlockwise direction,
the resonator operates below threshold and generates the
EPR entangled state (see Appendix G for more details).

The key rate depends on the two-mode squeezing and
antisqueezing levels of the entangled state. However, higher
two-mode squeezing does not necessarily mean higher key rate,
especially at long distances, because higher two-mode squeezing
is usually accompanied by a higher excess noise in anti-squeez-
ing, which degrades the purity of the EPR states that can be
exploited by Eve. To improve the key rate, a high-purity
EPR state is prepared by suppressing the intracavity loss and
improving the escape efficiency of the nonlinear resonator.
Furthermore, the pump power of the nonlinear resonator is
optimized to generate an EPR source with squeezing and anti-
squeezing levels of −7.1 and 9.6 dB, respectively. In this case,
the key rate is maximized within a transmission distance of
80 km (from Charlie to Bob LB) when the distance between
Alice and Charlie is close to 0 km (see Appendix D for more
details).

The two modes of the EPR state and the corresponding LOs
are separated by two dichroic beam splitters, and the mode at
810 nm is sent to Alice, whereas the other mode at 1550 nm is
coupled into single-mode polarization-maintaining fiber devi-
ces. The LO beam at 1550 nm is converted into pulsed light
with a 50 kHz repetition rate and 8.5 μs pulse width by an
amplitude modulator (AM). It is delayed by a 1.8 km single-
mode fiber and combined with the signal mode on a polariza-
tion beam splitter (PBS). Then, the polarization-multiplexing
and time-division-multiplexing LO and signal beams are sent to
Bob via a telecom single-mode fiber. In this way, the photon
leakage and nonlinear scattering noise of the intense LO beam
are suppressed.

At Alice’s site, we only couple the LO beam into the fiber-
pigtailed phase modulator (PM) to randomly switch the mea-
surement bases between the phase and amplitude quadrature.
The signal beam propagates in free space and combines with
the output LO beam from the collimator at a PBS. Then, the
two beams interfere at a 50:50 beam splitter consisting of a half-
wave plate and a PBS, and the output modes are detected
by BHD1.

At Bob’s site, the signal and LO beams at 1550 nm output
from the long-distance fiber are polarization-demultiplexed by
a polarization controller (PC) and PBS. The signal mode is de-
layed by the same length of fiber as that of the LO at Charlie’s
site to ensure the time synchronization between the signal and
the LO. When the length of the transmission fiber is more than
40 km, an erbium-doped fiber amplifier followed by an optical
filter (the full width at half-maximum is 160 pm) and an optical
attenuator are employed to boost the LO power, so as to ensure
that the signal-to-noise ratio of BHD2 is above 10 dB.

B. Switching Measurement Bases
Figure 3 shows a time-sequence diagram of the signal modes
and measurement base pulses in our experiment. The orange
and pink lines represent the signal modes measured at Alice’s

Fig. 2. Schematic drawing of the experimental setup. Charlie prepares a two-color EPR entangled state and sends one mode (810 nm) to Alice and
the other mode (1550 nm) to Bob. The two users randomly measure the amplitude or phase quadrature of the received signal mode with BHDs.
PZT, piezoelectric-transducer; AM, amplitude modulator; PM, phase modulator; FM, Faraday mirror; PBS, polarization beam splitter; DBS, di-
chroic beam splitter; HR, mirror with high reflection; HWP, half-wave plate; PC, polarization controller; EDFA, erbium-doped fiber amplifier;
ATT, attenuator; FPS, fiber phase shifter; BS, 50:50 beam splitter.
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and Bob’s sites, respectively. The solid squares indicate four
pairs of entangled quantum states generated from the EPR en-
tangled source at the same time; more precisely, �1A, 1B�,
�2A, 2B�, �3A, 3B�, and �4A, 4B�. The time span of each quan-
tum state is 6 μs. Bob’s quantum state has a delay of approx-
imately 100 μs relative to Alice’s quantum state, which arises
from the delay of 20 km of telecom single-mode fiber. The
black line represents the pulsed LO that is synchronized with
signal mode at Bob’s site. The green and blue lines represent the
measurement base voltage pulses that Alice and Bob have inde-
pendently chosen.

To ensure that both users share the same phase reference
frame and implement the correct quadrature measurement,
we use a piezoelectric-transducer and a fiber phase shifter to
compensate the slow phase drift between the LO and signal
beams and lock their relative phase to π∕2. Then, the electric
pulses of the random and independent measurement bases are

applied to the high-speed PM, so as to realize the random
switching between the phase and amplitude quadratures.
During the operation of the QKD system, the clocks of pulse-
chopping, measurement bases, and quadrature sampling of
Alice, Bob, and Charlie are strictly synchronized.

Particular attention must be paid to the introduction of ex-
cess noises, which seriously affect QKD performance. The
base-switching pulses will affect the error signal of the slow drift
phase and reduce the locking accuracy, which further disturbs
the normal measurement of BHD. To measure the phase quad-
rature, zero voltage is applied to PM for the first 20 μs, followed
by a jV π∕2 (j � �, −) voltage of 20 μs. For measurement of the
amplitude quadrature, we first actuate the PM with voltage of
jV π∕2 for 20 μs and then switch the voltage to 0 for another
20 μs. The sign of the current voltage jV n

π∕2 is opposite to that
of the previous voltage jV n−1

π∕2 with j � � for n � 1. In this
case, the high-frequency phase variation component caused
by the bases switching can be averaged within a maximum
period of 80 μs. In addition, a 5 kHz low-pass filter is used
to filter the high-frequency phase variation component in
the error signal before it is fed into the phase lock loop, so as
to ensure that the locking accuracy remains intact with and
without the measurement bases [18].

C. Experimental Results
Figure 4(a) depicts the experimental and theoretical security
key rates versus the transmission distance from Charlie to
Bob (LB), where three different transmission distances from
Charlie to Alice (LA � 0, 1, and 2 km) are investigated.
Here, LA is simulated by inserting a neutral attenuator into
the signal path. The experimental parameters used to estimate
the key rate are shown in Table 1 (see Appendices C and G for
more details).

Figure 4(b) shows the quantum correlation outcomes of the
amplitude quadrature �xA, xB� and phase quadrature �pA, pB�
simultaneously observed by Alice and Bob at LA � 2 km
and LB � 20 km. From the experimental data, we can deter-

mine the EPR criterion to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V x

AjB · V
p
AjB

q
� 0.935 < 1,

which clearly verifies the quadrature entanglement of the
two modes shared between Alice and Bob.

Fig. 3. Time-sequence diagram of signal modes and measurement
base pulses. It shows the relative timing relationship between the signal
mode and its corresponding measurement base pulses.

(a) (b)

Fig. 4. Key rates for different distances and quantum correlation of the distributed EPR states. (a) Security key rates versus transmission distance
from Charlie to Bob (LB) for different (equivalent) transmission distances from Charlie to Alice (LA) of 0, 1, and 2 km. Solid and dashed lines
represent the theoretical simulation with the p base choosing probabilities of P � 0.9 and 0.5, respectively. Circles and triangles represent exper-
imental measurement data. (b) Under conditions of LA � 2 km and LB � 20 km, the quantum correlation between Alice’s and Bob’s amplitude
quadrature (1 − P � 0.1) and phase quadrature (P � 0.9).
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We implement the protocol for three situations: (1) LA �
0 km, and LB varying from 10 to 60 km; (2) LA � 1 km, and
LB varying from 10 to 40 km; (3) LA � 2 km, and LB varying
from 10 to 20 km. Two biased-base choices of 0.9/0.1 (phase
quadrature/amplitude quadrature) and 0.5/0.5 are demon-
strated. The biased base of 0.9/0.1 increases the key rate sig-
nificantly, i.e., by an amount of 64% compared with the
unbiased base 0.5/0.5, which confirms our theoretical analysis
of the optimal basis-selection ratio.

5. CONCLUSIONS AND OUTLOOK

The CV-QKD with the entanglement source between two
users has the best performance at an asymmetric configuration;
that is, one of the QKD users is closer to the entanglement
source. This protocol is applicable to a number of star-type
quantum networks with asymmetric configuration in practice,
such as the quantum cryptography government network shown
in Fig. 5, in which the private communication between each
department of the civic center (Alice) and remote district gov-
ernment (Bob) can be established. More precisely, the sophis-
ticated and expensive entangled source can be located in the
civic center, so that each department of the civic center is very
close to it. Computer-controlled optical switches can be used to
connect the departments of the civic center and remote district
government according to a user’s request in this network. Once

the connection between a pair of users is established, the en-
tangled beams are sent to them via quantum channels. In this
case, the departments of the civic center can share secret keys
with the remote district government using the protocol.

We have demonstrated the first CV-QKD with partially
characterized EPR entangled states as the common relay node.
To increase the efficiency of the scheme, we proposed and dem-
onstrated the biased base strategy, which significantly improves
the key rate compared with the original unbiased protocol. We
remark that this can be extended to the finite-size scenario [35]
(see Appendix E). Our work contributes an important step to
the establishment of a CV-QKD quantum network with shared
entanglement source, in which users only need to employ in-
expensive detection equipment. More precisely, the output
modes of the EPR source between the two users can be con-
nected to 1 ×M and 1 × N optical switches with nearby and
distant users, respectively. By controlling the optical switch us-
ing a computer, each nearby user connected to one mode of the
source can share the secure key with any distant user connected
to the other mode of the source. It forms an M to N quantum
network with entanglement source sharing.

The performance of our experimental system can be im-
proved by further optimization. For instance, one can increase
the propagation efficiency from the source to the nearest
receiver Alice from 97% to 99%, optimize the interference ef-
ficiency to 99% and quantum efficiency of the photodiode to
99%. Similarly, the detection efficiency of Bob can be im-
proved to 0.6 by welding all optical fiber devices to reduce
the connector loss. For the entangled source, the escape
efficiency can be increased to 0.95 by increasing the transmit-
tance of the output coupling mirror and reducing the intracav-
ity loss. Through the above optimizations, the distribution
distance from the source to Alice can increase to 5 km
with LB � 25 km.

In our protocol, the entangled source is assumed to be par-
tially characterized and the receiver is trusted. If the source is
completely uncharacterized or untrusted, the non-Gaussian at-
tack can be carried out by Eve to gain more information. The
performance improvement of the protocol against this attack is
worthy to be explored. For a completely characterized and
trusted source, Eve can only attack the two quantum channels.
In this case, the performance of the entanglement-in-
the-middle protocol can be improved significantly (see
Appendix F). For instance, the distribution distance can be in-
creased to LA � LB � 8 km or LA � 5 km and LB � 60 km,
effectively extending the distance in the symmetric and asym-
metric quantum channels.

At present, a number of attacks against the receiver have
been found, including saturation attack [36], blinding attack
[37], calibration attack [38], and LO intensity attack [39].
However, these loopholes can be effectively eliminated by em-
ploying proper countermeasures [7,8]. For instance, one solu-
tion against these attacks is to add a real-time monitoring
module for the LO power and the shot noise. The locally
LO (LLO) scheme is also a useful countermeasure to prevent
LO attacks [40,41]. In future work, we will employ the LLO
scheme and implement real-time shot-noise measurement to
guarantee the practical security at the receiver side.

Table 1. List of Experimental Parameters

Parameter Symbol Value

Reconciliation efficiency β 0.95
Alice’s excess noise εA 0.001
Bob’s excess noise εB 0.01
Alice’s electronic noise νelA 0.02
Bob’s electronic noise νelB 0.05
Alice’s detection efficiency ηA 0.884
Bob’s detection efficiency ηB 0.506

Alice 2

Entanglement
source

Entanglement
source

Alice M

Alice 1

Bob 1 Bob 2

4boB3boB

Bob 5 Bob N

Alice 2

Entanglement
source

Alice M

Alice 1

Bob 1 Bob 2

4boB3boB

Bob 5 Bob N
Fig. 5. Star-type quantum network. The entanglement source is
placed at a common network node and is shared by multiple end users.
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Further research contains several directions. First, the user’s
detection equipment can be integrated into photonic and elec-
tronic chips to form a miniaturized and convenient QKD net-
work [42,43]. Second, the protocol may be extended to a fully
connected quantum network architecture via wavelength-divi-
sion multiplexing technologies [44]. In addition, the protocol is
limited to asymmetric situations at present for good perfor-
mance, where one user is located relatively closer to the relay.
For symmetric case, our QKD system can reach LA �
LB � 5 km. Extending the distance of the protocol in a sym-
metric case is an issue to be addressed in the future to meet the
wider applications.

Although our work focuses on the proof-of-principle exper-
imental demonstration, the stability of the experimental system
is critical to support the long-term use of future quantum net-
works. The main issue to solve is the development of an inte-
grated, miniaturized, and stable entanglement source that
supports long-term stable operation. The other key issue is that
the implementation of all control and data-processing tasks
of the system should be fully automated without human
interaction.

APPENDIX A: THEORETICAL SECRET KEY
RATE

In the asymptotic limit, the secret key rate of the protocol
against collective attacks is given by

K∞
RR � PAPB�βI xAB − χxBE � � �1 − PA��1 − PB��βI pAB − χpBE�:

(A1)

The Shannon mutual information between Alice and Bob for
two quadratures x and p can be written as

I xAB � 1

2
log2

V x
A

V x
A∕B

� 1

2
log2

V x
A

V x
A − �Cx

AB�2∕V x
B
,

I pAB � 1

2
log2

V p
A

V p
A∕B

� 1

2
log2

V p
A

V p
A − �Cp

AB�2∕V p
B
, (A2)

where V x�p�
A , V x�p�

B , and Cx�p�
AB represent the amplitude (phase)

variance of Alice’s sifted data, the amplitude (phase) variance of
Bob’s sifted data, and the covariance of Alice’s and Bob’s data,
respectively. The upper bound of the information that Eve can
steal under collective attacks is quantized by the Holevo bound
χx�p�BE :

χx�p�BE � S�ρE � − S�ρx�p�E∕B�: (A3)

Assuming that Eve can purify the states shared between
Alice and Bob and the detection process is believable, the
Holevo bound χx�p�BE can be rewritten as

χx�p�BE � S�ρA1B1
� − S�ρx�p�A1FG∕B�, (A4)

where S�ρA1B1
� and S�ρx�p�A1FG∕B� are the von Neumann entropy

of the quantum states ρA1B1
and ρx�p�A1FG∕B , which can be calcu-

lated from the symplectic eigenvalues λ1,2 and λx�p�3,4,5 of the

covariance matrix γA1B1
and γx�p�A1FG∕B . The symplectic eigenval-

ues are obtained by finding the (standard) eigenvalues of the
matrix iΩγ, where Ω is defined as

Ω � ⊕
k

j�1

�
0 1
−1 0

�
, (A5)

where k takes 2 or 3, depending on the number of modes of the
covariance matrix. Then, the Holevo bound χx�p�BE becomes

χx�p�BE �
X2
i�1

f �λi� −
X5
i�3

f �λx�p�i �, (A6)

where f �x� � x�1
2
log2

x�1
2

− x−1
2
log2

x−1
2
.

The initial prepared EPR entangled state γA0B0
has the form

γA0B0
�

�
V A0

I CA0B0
σz

CA0B0
σz V B0

I

�
, (A7)

where I is the identity matrix and σz � diag�1, − 1�. The var-
iances of Alice’s and Bob’s modes and their correlation are
given by

V A0
� V B0

� 1

2
�1∕s � s � ΔV 0�,

CA0B0
� 1

2
�1∕s − s � ΔV 0�,

h�x̂A0
− x̂B0

�2i � h�p̂A0
� p̂B0

�2i � 2s, (A8)

where s is the degree of two-mode squeezing, and ΔV 0 is the
excess noise of the antisqueezed quadrature. After the EPR
states are sent to Alice and Bob through two quantum channels,
the covariance matrix γA1B1

is obtained, which is expressed as

γA1B1
�

2
6664

V x
A1

0 Cx
A1B1

0

0 V p
A1

0 Cp
A1B1

Cx
A1B1

0 V x
B1

0

0 Cp
A1B1

0 V p
B1

3
7775, (A9)

and

V x
A1

� V p
A1

� V A1
� TA�V A0

� εA� � 1 − TA,

V x
B1

� V p
B1

� V B1

� T B �V B0
ηS � �1 − ηS� � εB � � 1 − TB ,

Cx
A1B1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηST AT B

p
CA0B0

� g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − TA

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − TB

p
,

Cp
A1B1

� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηST AT B

p
CA0B0

� g 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − TA

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T B

p
, (A10)

where two quantum channels are characterized by the transmis-
sions TA and T B and excess noises εA and εB , respectively, and
ηs denotes the loss of optical components before the channel.
Here, we consider the joint two-mode Gaussian attack [17]. g
and g 0 represent the correlations between the two quantum
channels. Specifically, Eve’s two ancillary modes E1 and E2

are extracted from a reservoir of entangled states and have
the covariance matrix of the form [17]

γE1E2
�

�
ωAI G
G ωBI

�
, G �

�
g 0
0 g 0

�
, (A11)

where ωA and ωB are the variances of the thermal noise
introduced by E1 and E2, respectively, and ωA �
εAT A∕�1 − TA� � 1, ωB � εBT B∕�1 − T B� � 1. The choices
of g and g 0 must satisfy the Heisenberg uncertainty principle.
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When g � g 0 � 0, the joint two-mode Gaussian attack degen-
erates into two independent Gaussian attacks.

In our protocol, Alice and Bob perform homodyne measure-
ment; thus, the covariance matrix γx�p�A1FG∕B can be calculated by

γx�p�A1FG∕B � γA1FG − σA1FG;B�X γBX �MPσTA1FG;B , (A12)

where X � diag�1,0� or X � diag�0,1� when Bob’s projective
measurement is in amplitude or phase quadrature. MP denotes
the Moore–Penrose inverse of a matrix. γA1FG , σA1FG;B , and γB
are the submatrices of the covariance matrix γA1FGB , which has
the form

γA1FGB �
�

γA1FG σA1FG;B
σTA1FG;B γB

�
: (A13)

This matrix can be obtained by applying a beam splitter trans-
formation on the covariance matrix γA1B1

together with γF 0G .
Furthermore, using the transformation of the beam splitters

at Alice’s and Bob’s sites for γA1B1
, we obtain the covariance

matrix γAB with the form

γAB �

2
6664

V x
A 0 Cx

AB 0
0 V p

A 0 Cp
AB

Cx
AB 0 V x

B 0
0 Cp

AB 0 V p
B

3
7775, (A14)

where

V x
A � V p

A � ηAV A1
� 1 − ηA � velA,

V x
B � V p

B � ηBV B1
� 1 − ηB � velB ,

Cx
AB � ffiffiffiffiffiffiffiffiffiffi

ηAηB
p

Cx
A1B1

, Cp
AB � ffiffiffiffiffiffiffiffiffiffi

ηAηB
p

Cp
A1B1

. (A15)

Here, ηA (ηB) and velA (velB) are the detection efficiency and
electronic noise of Alice (Bob). Inserting Eqs. (A14) and (A15)
into Eq. (A2), the mutual information I x�p�AB can be obtained.

APPENDIX B: MINIMIZATION OF THE KEY RATE

In Appendix A, we consider a realistic Gaussian attack against
two quantum channels, i.e., joint two-mode Gaussian attack. It
is important to note that the key rate depends on the correla-
tion parameters �g , g 0� of the joint two-mode Gaussian attack
via the correlation coefficient Cx�p�

A1B1
. To obtain the secure key

rate, we need to minimize the rate over all accessible values in
the correlation plane �g , g 0�. In CV-MDI-QKD [17], it is
found that the optimal correlated attack that Eve can perform
is the “negative EPR attack” in which

g 0 � −g � ϕ,

ϕ�min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ωA − 1��ωB � 1�

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ωA � 1��ωB − 1�

p �
: (B1)

However, the case is different for our protocol. The condition
of g 0 � −g � ϕ does not indicate Eve’s strongest attack. In this
section, we analyze the optimal attack that Eve can perform.

First, we derive the analytical expression for the ideal key
rate of the protocol by assuming the ideal detection and data
reconciliation. The mutual information between Alice and Bob
can be rewritten as

I xAB � 1

2
log2

V A1
V B1

V A1
V B1

− �Cx
A1B1

�2 ,

IpAB � 1

2
log2

V A1
V B1

V A1
V B1

− �Cp
A1B1

�2 : (B2)

The Holevo bound χx�p�BE can be simplified to

χxBE � f �λ1� � f �λ2� − f �λx3�,
χpBE � f �λ1� � f �λ2� − f �λp3�, (B3)

where

λ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ1 � ξ2

2

r
, λ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ1 − ξ2

2

r
, ξ1 � V 2

A1
� V 2

B1
� 2Cx

A1B1
Cp

A1B1
,

ξ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V 2

A1
− V 2

B1
�2 � 4�V 2

A1
� V 2

B1
�Cx

A1B1
Cp

A1B1
� 4V A1

V B1
��Cx

A1B1
�2 � �Cp

A1B1
�2�

q
, (B4)

and

λx3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

A1
−
V A1

�Cx
A1B1

�2
V B1

s
,

λp3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

A1
−
V A1

�Cp
A1B1

�2
V B1

s
: (B5)

The key rate is

ktot � PAPBkxAB � �1 − PA��1 − PB�kpAB
� PAPBβI xAB � �1 − PA��1 − PB�βI pAB
− PAPB �f �λ1� � f �λ2� − f �λx3��
− �1 − PA��1 − PB��f �λ1� � f �λ2� − f �λp3��: (B6)

When PA � PB � 1∕2, the key rate can be simplified to

ktot �
β�I xAB � IpAB�

4
−
f �λ1� � f �λ2�

2
� f �λx3� � f �λp3�

4
:

(B7)

We can find that the key rate is invariant under permutation
g 0 � −g , which means that the key rate is symmetric about the
bisector g 0 � −g. Similar to CV-MDI-QKD, combining the
symmetry and convexity of the accessible sets �g , g 0� allows
one to restrict its minimization to the accessible points along
the bisector g 0 � −g. Then, the optimal coherent attack can be
obtained by g 0 � −g � ϕ.

However, for the proposed biased base scheme, we find that
the key rate changes under permutation of g 0 � −g. Thus, the
key rate is asymmetric about the bisector g 0 � −g. In Fig. 6, we
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give the corresponding accessible region of the correlation
�g , g 0� and achievable key rate at the fixed channel parameters.
Note that the correlation region �g , g 0� is symmetric with re-
spect to the bisector g 0 � −g. However, the key rate is not sym-
metric about g 0 � −g due to the asymmetric base. The key rate
decreases gradually toward the top-left corner of the correlation
plane, but the extreme top-left point, that is, g 0 � −g � ϕ,
does not mean the minimum key rate that can be achieved.
Such a phenomenon can be clearly observed in Fig. 7, which
is a 3D graphical representation of the dependence of key rate
on the �g , g 0� (top-left corner of Fig. 6). The blue line and circle
represent g 0 � −g � ϕ and the corresponding key rate, respec-
tively. The red dot and line represent the minimum key rate
and the corresponding values of �g , g 0�, respectively. The worst
�g , g 0� corresponding to Eve’s optimal attack depends on the
selection probability of the basis. For theoretical analysis, the
minimum secret key rate can be obtained by scanning all values
of �g , g 0� in the accessible physical region.

APPENDIX C: EXPERIMENTAL SECRET KEY
RATE

The experimental key rate is estimated using the covariance ma-
trix γAB with the form

γAB �

2
6664

V x
A 0 Cx

AB 0
0 V p

A 0 Cp
AB

Cx
AB 0 V x

B 0
0 Cp

AB 0 V p
B

3
7775: (C1)

The relevant parameters for the reconstructed covariance ma-
trix are the variances and covariances of the quadratures of Alice
and Bob, which can be directly estimated by either Alice
or Bob.

Supposing that Alice and Bob choose mx and mp raw keys
for the parameter estimation of the amplitude and phase quad-
ratures, respectively, the estimators can be given by

V̂ x
A � 1

mx

Xmx

i�1

x2Ai, V̂ x
B � 1

mx

Xmx

i�1

x2Bi,

Ĉx
AB � 1

mx

Xmx

i�1

xAixBi, V̂ p
A � 1

mp

Xmp

i�1

p2Ai,

V̂ p
B � 1

mp

Xmp

i�1

p2Bi, Ĉp
AB � 1

mp

Xmp

i�1

pAipBi: (C2)

Then, the Shannon mutual information between Alice and Bob
can be obtained by

I xAB � 1

2
log2

V̂ x
A

V̂ x
AjB

� 1

2
log2

V̂ x
A

V̂ x
A − �Ĉx

AB�2∕V̂ x
B
,

IpAB � 1

2
log2

V̂ p
A

V̂ p
AjB

� 1

2
log2

V̂ p
A

V̂ p
A − �Ĉp

AB�2∕V̂ p
B

: (C3)

The elements of the covariance matrix γA1B1
can be obtained by

using the relations

V̂ x
A1

� 1� V̂ x
A − 1 − velA

ηA
, V̂ p

A1
� 1� V̂ p

A − 1 − velA
ηA

,

V̂ x
B1

� 1� V̂ x
B − 1 − velB

ηB
, V̂ p

B1
� 1� V̂ p

B − 1 − velB
ηB

,

Ĉx
A1B1

� Ĉx
AB∕

ffiffiffiffiffiffiffiffiffiffi
ηAηB

p
, Ĉp

A1B1
� Ĉ p

AB∕
ffiffiffiffiffiffiffiffiffiffi
ηAηB

p
: (C4)

γx�p�A1FG∕B can be derived by applying the transformation of beam
splitter and projective measurement. Finally, the Holevo bound
χx�p�BE can be calculated by

χx�p�BE � S�ρA1B1
� − S�ρx�p�A1FG∕B�: (C5)

APPENDIX D: PERFORMANCE DEPENDENCE
OF THE PROTOCOL ON THE EPR STATES

The two-mode squeezing and antisqueezing levels can be evalu-
ated by simultaneously measuring either the amplitude
�xdA, xdB� or phase �pdA, pdB� quadrature of the EPR source
with balanced homodyne detection. From the definitions of
squeezing and antisqueezing of the two-mode entangled
states

h�x̂dA − x̂dB�2i � h�p̂dA � p̂dB�2i � 2s,

h�x̂dA � x̂dB�2i � h�p̂dA − p̂dB�2i � 2santi, (D1)

we have

Fig. 6. Accessible points and key rate in the correlation plane �g , g 0�
for LA � 1 km and LB � 20 km. The other parameters are set to
β � 0.95, εA � 0.001, εB � 0.01, ηA � 0.884, ηB � 0.506,
νelA � 0.02, νelB � 0.05, and PA � PB � 0.9.

Fig. 7. Zoom of top-left corner of Fig. 6.
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s � 1

2
�V dA � V dB − 2CdAdB�,

santi �
1

2
�V dA � V dB � 2CdAdB�, (D2)

where s and santi represent the squeezing and antisqueezing.
V dA and V dB are the variances of Alice’s and Bob’s measured
data, respectively, and CdAdB is their correlation, which con-
tains the electronic noise and limited detection efficiency of
the practical homodyne detector. Hence, the initial two-mode
squeezing and antisqueezing levels can be approximately in-
ferred by modifying s and santi to

s � 1

2

�
V dA − νeldA − �1 − ηdA�

ηdA

� V dB − νeldB − �1 − ηdB�
ηdB

−
2CdAdBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηdAηdB

p
�
,

santi �
1

2

�
V dA − νeldA − �1 − ηdA�

ηdA

� V dB − νeldB − �1 − ηdB�
ηdB

� 2CdAdBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηdAηdB

p
�
, (D3)

where νeldA, νeldB , ηdA, and ηdB are the electronic noises and
detection efficiencies of two homodyne detectors. The noise of
the antisqueezing is ΔV 0 � santi − 1∕s.

To fully investigate the dependence of protocol on the en-
tanglement degree of the EPR states, we experimentally prepare
the two-mode entangled state with different levels of squeezing
and antisqueezing. In Fig. 8, we simulate the asymptotic secret
key rate versus transmission distance for EPR states with the
experimental squeezing and antisqueezing values. Figure 8(a)
represents the situation where the distance between Alice
and Charlie is close to 0 km, and Fig. 8(b) simulates a
1 km of channel loss between Alice and Charlie. It is clear that
the key rate can be significantly improved by raising the effi-
ciency of Alice’s detector, because high efficiency increases the
mutual information between Alice and Bob while keeping the
knowledge of Eve about Bob’s results unchanged.

From Fig. 8, we find the higher two-mode squeezing does
not necessarily mean higher key rate, especially at the long dis-
tance; further, stronger squeezing is usually accompanied by a
higher excess noise level of the antisqueezed quadrature, which
is detrimental to QKD. The EPR source with −5.6 dB of
squeezing has the longer achievable transmission distance,
and a −7.1 dB squeezing EPR source is able to achieve the
higher key rate in the low- and medium-loss regions. In the
experiment, we employ a −7.1 dB squeezing EPR source to
meet the realistic application of the protocol in the asymmetric
configurations, namely, a 0, 0.2, and 0.4 dB loss between Alice
and Charlie.

In Fig. 9, we plot the maximum achievable transmission dis-
tance of the protocol as a function of the distance from Charlie
to Alice under realistic conditions. The parameters for the sim-
ulation are −7.1 dB of squeezing and 9.6 dB of antisqueezing,
β � 0.95, εA � 0.001, εB � 0.01, ηA � 0.884, ηs � 0.81,
ηB � 0.506, νelA � 0.02, and νelB � 0.05. We can find that
(for the reverse reconciliation) the protocol has better perfor-
mance when Charlie’s position is close to Alice.

APPENDIX E: IMPROVING THE SECRET KEY
RATE VIA A BIASED BASE METHOD

In the asymptotic limit, since the covariance matrix related to
the calculation of the key rate can always be accurately

(a)

(b)

Fig. 8. Secret key rate versus transmission distance in the asymptotic
case. The simulation parameters are set to β � 0.95, εA � 0.001,
εB � 0.01, ηA � 0.884, ηs � 0.81, ηB � 0.506, νelA � 0.02, and
νelB � 0.05.

Fig. 9. Maximum transmission distance from Charlie to Bob (LB)
versus the distance from Charlie to Alice (LA).
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estimated, and the prepared entanglement source is approxi-
mately symmetrical, the key generation rate with biased base
can be written as

K∞ � PAPB�βI xAB − χxBE �
� �1 − PA��1 − PB��βI pAB − χpBE �

≈ �PAPB � �1 − PA��1 − PB���βIAB − χBE �: (E1)

Obviously, the key rate can be improved by optimizing the
total sifted efficiency PAPB � �1 − PA��1 − PB�, where
PA, PB ∈ �0,1�. When the probabilities PA and PB are close
to 1 or 0, the total sifted efficiency approaches the maximum
value. In our experimental implementation, the biased-base
probabilities are set to PA � PB � 0.9, which indicates that
the phase quadratures are selected to be observed for most
of the time. In this case, the key rate generated is 64% higher
than that of the original unbiased base protocol.

In CV-QKD, there are two detection methods for the quan-
tum signals: homodyne detection and heterodyne detection.
The heterodyne detection does not need to randomly switch
the measurement bases; instead, it measures two quadratures
at the same time. Therefore, all the data can be used to extract
the key; however, it will inevitably introduce vacuum noises.
The homodyne detection detects only a quadrature by ran-
domly switching the measurement bases. The secret key can
only be extracted when both parties choose the same measure-
ment bases. Thus, in the original unbiased base scheme, half of
the raw data have to be discarded, which results in the waste of
quantum state resources and low efficiency of the protocol. By
changing the switching ratio of bases, the total base sifted effi-
ciency and the key rate can be significantly increased.

As shown in Fig. 10, we compare the key rates for the three
different protocols. The black solid lines indicate the original
case where Alice and Bob both perform homodyne detection
with equal base choice ratio of 0.5/0.5, which is equivalent to
the squeezed states protocol with homodyne detection and re-
verse reconciliation. The blue dashed lines indicate the case
where Alice performs homodyne detection and Bob performs
heterodyne detection, which is equivalent to the squeezed states
protocol with heterodyne detection and reverse reconciliation.
The red dashed lines indicate the case where Alice and Bob
both perform homodyne detection with biased-base choices
of 0.9/0.1. The simulation parameters are set to be the same
as those in Fig. 4 (or Table 1) of the main text. We can see that
the proposed biased-base scheme can achieve a higher key rate
at most of the distribution distance. The heterodyne detection,
instead of homodyne detection at Bob’s side, can only increase
the transmission distance a little. Note that the case where both
Alice and Bob perform heterodyne detection, which is equiv-
alent to the coherent states protocol and heterodyne detection,
is not shown here as there is no positive key rate.

In the finite-size regime, when statistical fluctuations of the
measured key data are taken into consideration and supposing
that the total number of signals exchanged between Alice and
Bob is N , the secret key rate for the biased base scheme is writ-
ten as [35]

K x � �1 − PA��1 − PB�
nx
N x

�βI x�δPE �AB − χx�δPE �BE − Δ�nx��,

K p � PAPB
np
N p

�βI p�δPE �AB − χp�δPE �BE − Δ�np��,

K finite � maxfK x , 0g �maxfK p, 0g, (E2)

where Nx � �1 − PA��1 − PB�N and Np � PAPBN are the
number of sifted signals in the x and p quadratures, respectively,
in which nx and np signals are used to extract the secret keys,
and the remaining mx � Nx − nx and mp � Np − np signals
are used for parameter estimation. δPE is the security parameter,
which quantifies the failure probability of the parameter esti-
mation process. Δ�nx� and Δ�np� are the correction terms re-
lated to the privacy amplification in two quadratures x and p.
Because of the statistical fluctuations, the covariance matrix
used to estimate the secret key rate can no longer be obtained
accurately. There is a trade-off between the base choice prob-
ability and accuracy of the parameter estimation. In this case, it
is of vital importance to find the optimal bias between the two
quadrature bases to maximize key rate.

(a)

(b)

Fig. 10. Secret key rate versus the transmission distance for three
different protocols. The simulation parameters are set to β � 0.95,
εA � 0.001, εB � 0.01, ηA � 0.884, ηs � 0.81, ηB � 0.506,
νelA � 0.02, and νelB � 0.05.
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APPENDIX F: COMPLETELY CHARACTERIZED
SOURCE

When the entangled source is considered to be completely char-
acterized and trusted, Eve can only attack the two quantum
channels. As shown in Fig. 11, the mixed EPR source can
be purified by a four-mode state. Suppose that Charlie initially
generates two independent pure EPR states (EPR1 and EPR2),
which are injected into a Mach–Zehnder interferometer where
two quadrature squeezers (SQZ1 and SQZ2) are inserted. By
setting the suitable parameters, any Gaussian two-mode state
ρA0B0

can be prepared. The four-mode state ρA0B0CD is pure.
Then, the information that Eve can steal, the Holevo bound

χx�p�BE , becomes

χx�p�BE � S�ρE � − S�ρx�p�E∕B� � S�ρA1B1CD� − S�ρ
x�p�
A1CDFG∕B�:

(F1)

In Fig. 12, we show the maximum achievable transmission
distance of the protocol considering the completely character-
ized entangled source. In this scenario, the protocol has better
performance compared with that of the partially characterized

source. For the symmetric case, the maximum transmission dis-
tance can reach up to LA � LB � 8.2 km. When LA � LB �
8 km, a key rate of 0.005 bits/pulse can be achieved. When
LA � LB � 5 km, a key rate of 0.096 bits/pulse is obtained.
For the asymmetric case, such as LA � 7, LB � 14, LA � 5,
and LB � 20 km, key rates of 0.007 and 0.024 bits/pulse
can be achieved, respectively. The reachable distribution dis-
tance is suitable to build a CV-QKD network with a shared
source in a city’s government service center or central business
district.

APPENDIX G: EXPERIMENTAL DETAILS AND
RESULTS

In the CV-QKD experiment based on EPR entangled states,
Charlie prepares a two-color EPR entangled state and sends
one mode (810 nm) to Alice and the other mode
(1550 nm) to Bob. Then, Alice and Bob randomly measure
the amplitude or phase quadrature of the received EPR mode
with the balanced homodyne detectors (BHDs). The quantum
state has a time span of 6 μs and repetition rate of 50 kHz. The
output signals of two BHDs are sampled by high-speed acquis-
ition cards with a sampling rate of 50 MHz. Due to the large
difference of the propagation paths for the two modes of the
EPR state, the recorded data of Alice and Bob are required to be
synchronized accurately. Because the interval of the sampling
data points is 0.02 μs, which is much smaller than the duration
of a quantum signal, we can realize the synchronization by
aligning the two user’s data directly. The recorded 300 data
points for each quantum state mix with a sinusoidal signal
at 3.5 MHz and low-pass filtered with a cutoff frequency of
0.5 MHz digitally. The digital low-pass filter we use is a
200-tap finite impulse response (FIR) filter. The filtered data
are added up to obtain the quadrature value of the quantum
state, which is located at the sideband frequency of
3.5 MHz with a bandwidth of 1 MHz.

For measurement of the amplitude and phase quadratures,
we need to apply voltages of �V π∕2 to the PM. Particular at-
tention should be paid to the processes of signal modulation
and detection. First, the voltage of the base pulses applied
to the PM exists in oscillation at the rising and falling edges
and may cause deviations of the measurement bases. Second,
the sudden change of relative phase between the signal and
LOmakes the output signal from the BHDs oscillate, especially
for Alice’s measured outcomes, where the LO and signal mode
are continuous-wave. Notice that this effect can be avoided for
Bob by setting the rising and falling edges of the base pulses at
the extinction regions of pulsed LO at 1550 nm (Fig. 3 of the
main text). To handle the above issues, we set the signal mode
in the second half of the base-switching pulse to make it far
away from the rising and falling edges. Another method we
adopted to suppress the influence of the oscillation on the
BHD measurement results is to reduce the LO power properly.

Bob’s excess noise mentioned in Table 1 of the main text
mainly comes from three parts. The first part is the imperfect
phase-locking accuracy between the LO beam and signal light,
which contributes to 0.002 shot-noise unit (SNU) excess noise.
The second part is the scattered noise photons due to the de-
polarized guided acoustic Brillouin scattering of the LO light in

Fig. 11. PM and EB schemes of CV-QKD protocol with com-
pletely characterized entangled source. Hom, homodyne detection;
SQZ, quadrature squeezer; QM, quantum memory.

Fig. 12. Maximum transmission distance from Charlie to Bob (LB)
versus the distance from Charlie to Alice (LA) for completely charac-
terized entangled source with two-mode squeezing and antisqueezing
of −7.1 and 9.6 dB. The simulation parameters are set to β � 0.95,
εB � 0.01, ηA � 0.884, ηB � 0.506, νelA � 0.02, and νelB � 0.05.
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a long-distance single-mode optical fiber, which induces an ex-
cess noise level about 0.001 SNU. The third part comes from
the experimental system noise including stability of the EPR
entanglement source and the calibration of the SNU, and
the resulting excess noise is about 0.007 SNU. Other excess
noise sources such as the leakage of LO light and the sponta-
neous Raman noise are suppressed to a negligible level by using
the time multiplexing and polarization multiplexing of LO and
signal light.

Tables 2 and 3 show the original data of the data point in
Fig. 4(a) of the main text, where V x

A�B� represents the measured
values of the amplitude quadrature normalized to shot noise
unit, V p

A�B� represents the normalized value of phase quadra-
ture, and Cx�p�

AB and K denote the covariance and secret key rate
calculated from the above measured values, respectively.
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