• Photonics Research
  • Vol. 11, Issue 3, 463 (2023)
Shanna Du1、2、†, Pu Wang1、2、3、†, Jianqiang Liu1、2, Yan Tian1、2, and Yongmin Li1、2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3School of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.475943 Cite this Article Set citation alerts
    Shanna Du, Pu Wang, Jianqiang Liu, Yan Tian, Yongmin Li. Continuous variable quantum key distribution with a shared partially characterized entangled source[J]. Photonics Research, 2023, 11(3): 463 Copy Citation Text show less

    Abstract

    Locking the sophisticated and expensive entanglement sources at the shared relay node is a promising choice for building a star-type quantum network with efficient use of quantum resources, where the involved parties only need to equip low-cost and simple homodyne detectors. Here, to our best knowledge, we demonstrate the first experimental continuous variable quantum key distribution with an entanglement source between the two users. We consider a practical partially characterized entangled source and establish the security analysis model of the protocol under realistic conditions. By applying a biased base technology, the higher key rate than that of the original protocol is achieved. The experimental results demonstrate that the distance between two users can reach up to 60 km over telecom single-mode fiber, implying the feasibility for high-rate and secure communication with a shared entangled source at metropolitan distances.
    KRR=(1PA)(1PB)(βIABxχBEx)+PAPB(βIABpχBEp),

    View in Article

    χBEx(p)=S(ρE)S(ρE/Bx(p))=S(ρA1B1)S(ρA1FG/Bx(p)),

    View in Article

    KRR=PAPB(βIABxχBEx)+(1PA)(1PB)(βIABpχBEp).(A1)

    View in Article

    IABx=12log2VAxVA/Bx=12log2VAxVAx(CABx)2/VBx,IABp=12log2VApVA/Bp=12log2VApVAp(CABp)2/VBp,(A2)

    View in Article

    χBEx(p)=S(ρE)S(ρE/Bx(p)).(A3)

    View in Article

    χBEx(p)=S(ρA1B1)S(ρA1FG/Bx(p)),(A4)

    View in Article

    Ω=j=1k[0110],(A5)

    View in Article

    χBEx(p)=i=12f(λi)i=35f(λix(p)),(A6)

    View in Article

    γA0B0=[VA0ICA0B0σzCA0B0σzVB0I],(A7)

    View in Article

    VA0=VB0=12(1/s+s+ΔV0),CA0B0=12(1/ss+ΔV0),(x^A0x^B0)2=(p^A0+p^B0)2=2s,(A8)

    View in Article

    γA1B1=[VA1x0CA1B1x00VA1p0CA1B1pCA1B1x0VB1x00CA1B1p0VB1p],(A9)

    View in Article

    VA1x=VA1p=VA1=TA(VA0+εA)+1TA,VB1x=VB1p=VB1=TB[VB0ηS+(1ηS)+εB]+1TB,CA1B1x=ηSTATBCA0B0+g1TA1TB,CA1B1p=ηSTATBCA0B0+g1TA1TB,(A10)

    View in Article

    γE1E2=[ωAIGGωBI],G=[g00g],(A11)

    View in Article

    γA1FG/Bx(p)=γA1FGσA1FG;B(XγBX)MPσA1FG;BT,(A12)

    View in Article

    γA1FGB=[γA1FGσA1FG;BσA1FG;BTγB].(A13)

    View in Article

    γAB=[VAx0CABx00VAp0CABpCABx0VBx00CABp0VBp],(A14)

    View in Article

    VAx=VAp=ηAVA1+1ηA+velA,VBx=VBp=ηBVB1+1ηB+velB,CABx=ηAηBCA1B1x,CABp=ηAηBCA1B1p.(A15)

    View in Article

    g=g=ϕ,ϕ=min{(ωA1)(ωB+1),(ωA+1)(ωB1)}.(B1)

    View in Article

    IABx=12log2VA1VB1VA1VB1(CA1B1x)2,IABp=12log2VA1VB1VA1VB1(CA1B1p)2.(B2)

    View in Article

    χBEx=f(λ1)+f(λ2)f(λ3x),χBEp=f(λ1)+f(λ2)f(λ3p),(B3)

    View in Article

    λ1=ξ1+ξ22,λ2=ξ1ξ22,ξ1=VA12+VB12+2CA1B1xCA1B1p,ξ2=(VA12VB12)2+4(VA12+VB12)CA1B1xCA1B1p+4VA1VB1[(CA1B1x)2+(CA1B1p)2],(B4)

    View in Article

    λ3x=VA12VA1(CA1B1x)2VB1,λ3p=VA12VA1(CA1B1p)2VB1.(B5)

    View in Article

    ktot=PAPBkABx+(1PA)(1PB)kABp=PAPBβIABx+(1PA)(1PB)βIABpPAPB[f(λ1)+f(λ2)f(λ3x)](1PA)(1PB)[f(λ1)+f(λ2)f(λ3p)].(B6)

    View in Article

    ktot=β(IABx+IABp)4f(λ1)+f(λ2)2+f(λ3x)+f(λ3p)4.(B7)

    View in Article

    γAB=[VAx0CABx00VAp0CABpCABx0VBx00CABp0VBp].(C1)

    View in Article

    V^Ax=1mxi=1mxxAi2,V^Bx=1mxi=1mxxBi2,C^ABx=1mxi=1mxxAixBi,V^Ap=1mpi=1mppAi2,V^Bp=1mpi=1mppBi2,C^ABp=1mpi=1mppAipBi.(C2)

    View in Article

    IABx=12log2V^AxV^A|Bx=12log2V^AxV^Ax(C^ABx)2/V^Bx,IABp=12log2V^ApV^A|Bp=12log2V^ApV^Ap(C^ABp)2/V^Bp.(C3)

    View in Article

    V^A1x=1+V^Ax1velAηA,V^A1p=1+V^Ap1velAηA,V^B1x=1+V^Bx1velBηB,V^B1p=1+V^Bp1velBηB,C^A1B1x=C^ABx/ηAηB,C^A1B1p=C^ABp/ηAηB.(C4)

    View in Article

    χBEx(p)=S(ρA1B1)S(ρA1FG/Bx(p)).(C5)

    View in Article

    (x^dAx^dB)2=(p^dA+p^dB)2=2s,(x^dA+x^dB)2=(p^dAp^dB)2=2santi,(D1)

    View in Article

    s=12(VdA+VdB2CdAdB),santi=12(VdA+VdB+2CdAdB),(D2)

    View in Article

    s=12[VdAνeldA(1ηdA)ηdA+VdBνeldB(1ηdB)ηdB2CdAdBηdAηdB],santi=12[VdAνeldA(1ηdA)ηdA+VdBνeldB(1ηdB)ηdB+2CdAdBηdAηdB],(D3)

    View in Article

    K=PAPB(βIABxχBEx)+(1PA)(1PB)(βIABpχBEp)[PAPB+(1PA)(1PB)](βIABχBE).(E1)

    View in Article

    Kx=(1PA)(1PB)nxNx[βIABx(δPE)χBEx(δPE)Δ(nx)],Kp=PAPBnpNp[βIABp(δPE)χBEp(δPE)Δ(np)],Kfinite=max{Kx,0}+max{Kp,0},(E2)

    View in Article

    χBEx(p)=S(ρE)S(ρE/Bx(p))=S(ρA1B1CD)S(ρA1CDFG/Bx(p)).(F1)

    View in Article

    Shanna Du, Pu Wang, Jianqiang Liu, Yan Tian, Yongmin Li. Continuous variable quantum key distribution with a shared partially characterized entangled source[J]. Photonics Research, 2023, 11(3): 463
    Download Citation