• Photonics Research
  • Vol. 10, Issue 1, 183 (2022)
Haoxu Guo1, Xiaodong Qiu1、3、*, Song Qiu2, Ling Hong1, Fei Lin1, Yuan Ren2、4、*, and Lixiang Chen1、5、*
Author Affiliations
  • 1Department of Physics and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China
  • 2Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
  • 3e-mail: qxd@xmu.edu.cn
  • 4e-mail: renyuan_823@aliyun.com
  • 5e-mail: chenlx@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.441785 Cite this Article Set citation alerts
    Haoxu Guo, Xiaodong Qiu, Song Qiu, Ling Hong, Fei Lin, Yuan Ren, Lixiang Chen. Frequency upconversion detection of rotational Doppler effect[J]. Photonics Research, 2022, 10(1): 183 Copy Citation Text show less
    References

    [1] C. Doppler. Über das farbige Licht der Doppelsterne und einigeranderer Gestirne des Himmels(1842).

    [2] M. Padgett. Electromagnetism: like a speeding watch. Nature, 443, 924-925(2006).

    [3] B. A. Garetz, S. Arnold. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun., 31, 1-3(1979).

    [4] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217-3219(1998).

    [5] J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, M. J. Padgett. Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828-4830(1998).

    [6] M. P. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [7] L. Marrucci. Spinning the Doppler effect. Science, 341, 464-465(2013).

    [8] S. Barreiro, J. W. R. Tabosa, H. Failache, A. Lezama. Spectroscopic observation of the rotational Doppler effect. Phys. Rev. Lett., 97, 113601(2006).

    [9] H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, D. Fan. Rotational Doppler effect in left-handed materials. Phys. Rev. A, 78, 033805(2008).

    [10] O. Korech, U. Steinitz, R. J. Gordon, I. S. Averbukh, Y. Prior. Observing molecular spinning via the rotational Doppler effect. Nat. Photonics, 7, 711-714(2013).

    [11] H. Zhou, D. Fu, J. Dong, P. Zhang, X. Zhang. Theoretical analysis and experimental verification on optical rotational Doppler effect. Opt. Express, 24, 10050-10056(2016).

    [12] H. L. Zhou, D. Z. Fu, J. J. Dong, P. Zhang, D. X. Chen, X. L. Cai, F. L. Li, X. L. Zhang. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl., 6, e16251(2017).

    [13] W. Zhang, J. Gao, D. Zhang, Y. He, T. Xu, R. Fickler, L. Chen. Free-space remote sensing of rotation at the photon-counting level. Phys. Rev. Appl., 10, 044014(2018).

    [14] Y. Zhai, S. Fu, C. Yin, H. Zhou, C. Gao. Detection of angular acceleration based on optical rotational Doppler effect. Opt. Express, 27, 15518-15527(2019).

    [15] S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, C. Xing. Influence of lateral misalignment on the optical rotational Doppler effect. Appl. Opt., 58, 2650-2655(2019).

    [16] S. Qiu, T. Liu, Y. Ren, Z. Li, C. Wang, Q. Shao. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Opt. Express, 27, 24781-24792(2019).

    [17] W. Zhang, D. Zhang, X. Qiu, L. Chen. Quantum remote sensing of the angular rotation of structured objects. Phys. Rev. A, 100, 043832(2019).

    [18] R. D. Hudson, J. W. Hudson. The military applications of remote sensing by infrared. Proc. IEEE, 63, 104-128(1975).

    [19] A. Barth. Infrared spectroscopy of proteins. BBA-Bioenergetics, 1767, 1073-1101(2007).

    [20] S. Türker-Kaya, C. W. Huck. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules, 22, 168(2017).

    [21] J. Shi, T. T. Wong, Y. He, L. Li, R. Zhang, C. S. Yung, J. Hwang, K. Maslov, L. V. Wang. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics, 13, 609-615(2019).

    [22] Q. Weng. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm., 64, 335-344(2009).

    [23] M. Wang. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. Appl. Opt., 46, 1535-1547(2007).

    [24] M. Wang, W. Shi. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the US: two case studies. Geophys. Res. Lett., 32, L17708(2005).

    [25] M. Mrejen, Y. Erlich, A. Levanon, H. Suchowski. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photon. Rev., 14, 2000040(2020).

    [26] K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, D. M. Jonas. Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer. Opt. Lett., 30, 1228-1230(2005).

    [27] M. Vollmer, K.-P. Möllmann. Infrared Thermal Imaging: Fundamentals, Research and Applications(2010).

    [28] B. Klein, E. Plis, M. N. Kutty, N. Gautam, A. Albrecht, S. Myers, S. Krishna. Varshni parameters for InAs/GaSb strained layer superlattice infrared photodetectors. J. Phys. D, 44, 075102(2011).

    [29] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [30] H. Dong, H. Pan, Y. Li, E. Wu, H. Zeng. Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts. Appl. Phys. Lett., 93, 071101(2008).

    [31] R. T. Thew, H. Zbinden, N. Gisin. Tunable upconversion photon detector. Appl. Phys. Lett., 93, 071104(2008).

    [32] C. Pedersen, E. Karamehmedović, J. S. Dam, P. Tidemand-Lichtenberg. Enhanced 2D-image upconversion using solid-state lasers. Opt. Express, 17, 20885-20890(2009).

    [33] K. Huang, X. Gu, H. Pan, E. Wu, H. Zeng. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett., 100, 151102(2012).

    [34] K. F. Li, J. H. Deng, X. Liu, G. Li. Observation of rotational Doppler effect in second harmonic generation in reflection mode. Laser Photon. Rev., 12, 1700204(2018).

    [35] G. Li, T. Zentgraf, S. Zhang. Rotational Doppler effect in nonlinear optics. Nat. Phys., 12, 736-740(2016).

    [36] L. Torner, J. P. Torres, S. Carrasco. Digital spiral imaging. Opt. Express, 13, 873-881(2005).

    [37] R. W. Boyd, B. R. Masters. Nonlinear Optics(2008).

    [38] F. Bouchard, N. H. Valencia, F. Brandt, R. Fickler, M. Huber, M. Malik. Measuring azimuthal and radial modes of photons. Opt. Express, 26, 31925-31941(2018).

    [39] R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, E. Wu. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. Opt. Express, 23, 9796-9802(2015).

    Haoxu Guo, Xiaodong Qiu, Song Qiu, Ling Hong, Fei Lin, Yuan Ren, Lixiang Chen. Frequency upconversion detection of rotational Doppler effect[J]. Photonics Research, 2022, 10(1): 183
    Download Citation