• Photonics Research
  • Vol. 7, Issue 5, 549 (2019)
Le Zhang1、2、5, Jiadong Wu1, Petr Stepanov2, Micah Haseman2, Tianyuan Zhou1、2、3, David Winarski2, Pooneh Saadatkia2, Sahil Agarwal2, Farida A. Selim2、6、*, Hao Yang3, Qitu Zhang3, Yun Wang4, Chingping Wong5, and Hao Chen1、7、*
Author Affiliations
  • 1Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • 2Center for Photochemical Sciences, Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403, USA
  • 3College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
  • 4School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
  • 5School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
  • 6e-mail: faselim@bgsu.edu
  • 7e-mail: chenhao@jsnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000549 Cite this Article Set citation alerts
    Le Zhang, Jiadong Wu, Petr Stepanov, Micah Haseman, Tianyuan Zhou, David Winarski, Pooneh Saadatkia, Sahil Agarwal, Farida A. Selim, Hao Yang, Qitu Zhang, Yun Wang, Chingping Wong, Hao Chen. Defects and solarization in YAG transparent ceramics[J]. Photonics Research, 2019, 7(5): 549 Copy Citation Text show less
    References

    [1] A. Ikesue, Y. L. Aung. Ceramic laser materials. Nat. Photonics, 2, 721-727(2008).

    [2] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J. Am. Ceram. Soc., 78, 1033-1040(1995).

    [3] H. Furuse, Y. Koike, R. Yasuhara. Sapphire/Nd:YAG composite by pulsed electric current bonding for high-average-power lasers. Opt. Lett., 43, 3065-3068(2018).

    [4] S. Bigotta, L. Galecki, A. Katz, J. Bohmler, S. Lemonnier, E. Barraud, A. Leriche, M. Eichhorn. Resonantly pumped eye-safe Er3+:YAG SPS-HIP ceramic laser. Opt. Express, 26, 3435-3442(2018).

    [5] A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, A. M. Murzakaev. Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders. J. Eur. Ceram. Soc., 27, 1165-1169(2007).

    [6] H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, R. Yasuhara. Optimization of laser emission at 2.8  μm by Er:Lu2O3 ceramics. Opt. Express, 26, 3497-3507(2018).

    [7] N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, T. Irifune. Transparent polycrystalline cubic silicon nitride. Sci. Rep., 7, 44755(2017).

    [8] C. Ma, J. Zhu, K. Liu, F. Tang, J. Long, Z. Wen, R. Ma, X. Yuan, W. Guo, J. Li, Y. Cao. Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7  nm. Opt. Lett., 41, 3317-3319(2016).

    [9] B. Villars, E. S. Hill, C. G. Durfee. Design and development of a high-power LED-pumped Ce:Nd:YAG laser. Opt. Lett., 40, 3049-3052(2015).

    [10] R. Boulesteix, A. Maitre, J. F. Baumard, Y. Rabinovitch, F. Reynaud. Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties. Opt. Express, 18, 14992-15002(2010).

    [11] A. Ikesue, K. Yoshida. Influence of pore volume on laser performance of Nd:YAG ceramics. J. Mater. Sci., 34, 1189-1195(1999).

    [12] K. Hasegawa, T. Ichikawa, S. Mizuno, Y. Takeda, H. Ito, A. Ikesue, T. Motohiro, M. Yamaga. Energy transfer efficiency from Cr3+ to Nd3+ in solar-pumped laser using transparent Nd/Cr:Y3Al5O12 ceramics. Opt. Express, 23, A519-A524(2015).

    [13] H. Yagi, T. Yanagitani, K.-I. Ueda. Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter. J. Alloy. Compd., 421, 195-199(2006).

    [14] L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, C. T. Tsai. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. J. Eur. Ceram. Soc., 24, 2681-2688(2004).

    [15] I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida. Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics. Appl. Phys. Lett., 77, 939-941(2000).

    [16] M. Bass, A. E. Paladino. Color centers in yttrium gallium garnet and yttrium aluminum garnet. J. Appl. Phys., 38, 2706-2707(1967).

    [17] K. Mori. Transient colour centres caused by UV light irradiation in yttrium aluminum garnet crystals. Phys. Status Solidi A, 42, 375-384(1977).

    [18] A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, C. Stanek. Mechanisms of nonstoichiometry in Y3Al5O12. Appl. Phys. Lett., 93, 191902(2008).

    [19] M. M. Kuklja, R. Pandey. Atomistic modeling of native point defects in yttrium aluminum garnet crystals. J. Am. Ceram. Soc., 82, 2881-2886(1999).

    [20] S. Rotman, R. Tandon, H. Tuller. Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet. J. Appl. Phys., 57, 1951-1955(1985).

    [21] S. Rotman, H. Tuller, C. Warde. Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet. J. Appl. Phys., 71, 1209-1214(1992).

    [22] C. Brecher, G. C. Wei, W. H. Rhodes. Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria. J. Am. Ceram. Soc., 73, 1473-1488(1990).

    [23] L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, G. C. Wei. Color centers in magnesium doped polycrystalline alumina. MRS Online Proc. Library Archive, 667, G7(2001).

    [24] H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, H. Yagi. Evaluation of oxide ion diffusivity in YAG ceramics. Mater. Sci. Technol., 25, 1341-1345(2009).

    [25] E. Zych, C. Brecher, H. Lingertat. Depletion of high-energy carriers in YAG optical ceramic materials. Spectrochim. Acta A, 54, 1771-1777(1998).

    [26] S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, G. J. Quarles. Hot isostatic pressing of transparent Nd:YAG ceramics. J. Am. Ceram. Soc., 92, 1456-1463(2009).

    [27] L. Zhang, T. Zhou, F. A. Selim, H. Chen. Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic. J. Am. Ceram. Soc., 101, 703-712(2018).

    [28] L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, Q. Zhang. Systematic optimization of spray drying for YAG transparent ceramics. J. Eur. Ceram. Soc., 35, 2391-2401(2015).

    [29] F. Selim, A. Khamehchi, D. Winarski, S. Agarwal. Synthesis and characterization of Ce:YAG nano-phosphors and ceramics. Opt. Mater. Express, 6, 3704-3715(2016).

    [30] J. Ji, L. Boatner, F. Selim. Donor characterization in ZnO by thermally stimulated luminescence. Appl. Phys. Lett., 105, 041102(2014).

    [31] P. Husband, I. Bartošová, V. Slugeň, F. Selim. Positron annihilation in transparent ceramics. J. Phys. Conf. Ser., 674, 012013(2016).

    [32] H. Klym. Study of nanoporous in humidity-sensitive MgAl2O4 ceramics with positron annihilation lifetime spectroscopy. Semicond. Phys. Quantum Electron. Optoelectron., 14, 109-113(2011).

    [33] D. Giebel, J. Kansy. LT10 program for solving basic problems connected with defect detection. Physics Procedia, 35, 122-127(2012).

    [34] A. J. Stevenson. The effects of sintering aids on defects, densification, and single crystal conversion of transparent neodymium:YAG ceramics(2010).

    [35] A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, G. L. Messing. Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. J. Am. Ceram. Soc., 94, 1380-1387(2011).

    [36] I. S. Akhmadullin, S. A. Migachev, S. P. Mironov. Thermo- and photoinduced defects in Y3Al5O12 crystals. Nucl. Instrum. Meth. B, 65, 270-274(1992).

    [37] C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, F. A. Selim. Energy levels of exciton traps in yttrium aluminum garnet single crystals. J. Appl. Phys., 111, 063505(2012).

    [38] F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, M. D. McCluskey. Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets. Phys. Rev. B, 88, 174102(2013).

    [39] D. T. Mackay, C. R. Varney, J. Buscher, F. A. Selim. Study of exciton dynamics in garnets by low temperature thermo-luminescence. J. Appl. Phys., 112, 023522(2012).

    [40] C. Varney, D. Mackay, S. Reda, F. Selim. On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals. J. Phys. D, 45, 218-224(2011).

    [41] V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, S. Zazubovich. Luminescence of undoped LuAG and YAG crystals. Phys. Status Solidi C, 2, 97-100(2005).

    [42] H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A. I. Popov. Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low. Temp. Phys., 42, 601-605(2016).

    [43] V. Balitska, J. Filipecki, A. Ingram, O. Shpotyuk. Defect characterization methodology in sintered functional spinels with PALS technique. Phys. Status Solidi C, 4, 1317-1320(2007).

    [44] O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, J. Filipecki. PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics. J. Eur. Ceram. Soc., 25, 2981-2984(2005).

    [45] L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, J. Ballato. Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. J. Mater. Sci., 50, 3183-3188(2015).

    [46] P. J. Schultz, K. G. Lynn. Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys., 60, 701-779(1988).

    [47] K. Ito, H. Nakanishi, Y. Ujihira. Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius. J. Phys. Chem. B, 103, 4555-4558(1999).

    [48] X. Feng. Anti-site defects in YAG and LuAG crystals. J. Inorg. Mater., 25, 785-794(2010).

    [49] Y. He, X. Ma, Z. Gui, L. Li. Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation. Acta Phys. Sinica, 47, 146-153(1998).

    CLP Journals

    [1] Yingshuang Shan, Le Zhang, Tianyuan Zhou, Cen Shao, Lei Zhang, Yuelong Ma, Qing Yao, Zhigang Jiang, Farida A. Selim, Hao Chen. One-order-higher Cr4+ conversion efficiency in Cr4+:YAG transparent ceramics for a high-frequency passively Q-switched laser[J]. Photonics Research, 2019, 7(8): 933

    Le Zhang, Jiadong Wu, Petr Stepanov, Micah Haseman, Tianyuan Zhou, David Winarski, Pooneh Saadatkia, Sahil Agarwal, Farida A. Selim, Hao Yang, Qitu Zhang, Yun Wang, Chingping Wong, Hao Chen. Defects and solarization in YAG transparent ceramics[J]. Photonics Research, 2019, 7(5): 549
    Download Citation