• Photonics Research
  • Vol. 9, Issue 12, 2454 (2021)
Shibiao Wei1、2, Guiyuan Cao1、2, Han Lin2, Haoran Mu2, Wenbo Liu2, Xiaocong Yuan1, Michael Somekh1, and Baohua Jia2、3、*
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • 2Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • 3The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • show less
    DOI: 10.1364/PRJ.434599 Cite this Article Set citation alerts
    Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454 Copy Citation Text show less
    References

    [1] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [2] D. Liu, Z. Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun., 3, 1205(2012).

    [3] S. W. Hell. Toward fluorescence nanoscopy. Nat. Biotechnol., 21, 1347-1355(2003).

    [4] A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, N. M. Reis. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron., 70, 5-14(2015).

    [5] M. M. A. Zeinhom, Y. Wang, Y. Song, M. Zhu, Y. Lin, D. Du. A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in yoghurt and egg. Biosens. Bioelectron., 99, 479-485(2018).

    [6] K. Karakostas, S. Gkagkanis, K. Katsaliaki, P. Köllensperger, A. Hatzopoulos, M. E. Kiziroglou. Portable optical blood scattering sensor. Microelectron. Eng., 217, 111129(2019).

    [7] R. Kingslake, R. B. Johnson. Lens Design Fundamentals(2009).

    [8] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [9] H. Pahlevaninezhad, M. Khorasaninejad, Y. W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Y. Zhu, C. W. Qiu, F. Capasso. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [10] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [11] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [12] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [13] B. Xu, H. M. Li, S. L. Gao, X. Hua, C. Yang, C. Chen, F. Yan, S. N. Zhu, T. Li. Metalens-integrated compact imaging devices for wide-field microscopy. Adv. Photonics, 2, 066004(2020).

    [14] V. J. Einck, M. Torfeh, A. McClung, D. E. Jung, M. Mansouree, A. Arbabi, J. J. Watkins. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 8, 2400-2409(2021).

    [15] Z. X. Shen, S. H. Zhou, X. N. Li, S. J. Ge, P. Chen, W. Hu, Y. Q. Lu. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics, 2, 036002(2020).

    [16] Y. Aharonov, F. Colombo, I. Sabadini, D. Struppa, J. Tollaksen. Some mathematical properties of superoscillations. J. Phys. A, 44, 365304(2011).

    [17] Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, A. Bahabad. Breaking the temporal resolution limit by superoscillating optical beats. Phys. Rev. Lett., 119, 043903(2017).

    [18] G. Yuan, E. T. Rogers, N. I. Zheludev. “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light Sci. Appl., 8, 2(2019).

    [19] Y.-X. Shen, Y.-G. Peng, F. Cai, K. Huang, D.-G. Zhao, C.-W. Qiu, H. Zheng, X.-F. Zhu. Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nat. Commun., 10, 1(2019).

    [20] X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, M. Gu. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015).

    [21] G. Cao, X. Gan, H. Lin, B. Jia. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv., 1, 18001201(2018).

    [22] G. Cao, H. Lin, S. Fraser, X. Zheng, B. Del Rosal, Z. Gan, S. Wei, X. Gan, B. Jia. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces, 11, 20298-20303(2019).

    [23] H. Lin, S. Fraser, M. H. Hong, M. Chhowalla, D. Li, B. H. Jia. Near-perfect microlenses based on graphene microbubbles. Adv. Photonics, 2, 055001(2020).

    [24] X. Li, S. Wei, G. Cao, H. Lin, Y. Zhao, B. Jia. Graphene metalens for particle nanotracking. Photonics Res., 8, 1316-1322(2020).

    [25] S. Wei, G. Cao, H. Lin, X. Yuan, M. Somekh, B. Jia. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769-4776(2021).

    [26] P. Ding, Y. Li, L. Shao, X. Tian, J. Wang, C. Fan. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express, 26, 28038-28050(2018).

    [27] K.-T. Lin, H. Lin, T. Yang, B. Jia. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun., 11, 1389(2020).

    [28] H. Lin, B. C. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. Martijn de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [29] D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, Y. Zhang. Ultrathin terahertz planar elements. Adv. Opt. Mater., 1, 186-191(2013).

    [30] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W.-T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [31] M. J. Simpson, A. G. Michette. Imaging properties of modified Fresnel zone plates. Optica Acta, 31, 403-413(1984).

    [32] K. Miyamoto. The phase Fresnel lens. J. Opt. Soc. Am., 51, 17-20(1961).

    [33] H. Arsenault. Diffraction theory of Fresnel zone plates. J. Opt. Soc. Am., 58, 1536(1968).

    [34] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary masks. Appl. Opt., 5, 967-969(1966).

    [35] A. W. Lohmann, D. P. Paris. Binary Fraunhofer holograms, generated by computer. Appl. Opt., 6, 1739-1748(1967).

    [36] B. R. Brown, A. W. Lohmann. Computer-generated binary holograms. IBM J. Res. Dev., 13, 160-168(1969).

    [37] J. P. Hugonin, P. Chavel. A complement to the theory of Lohmann-type computer holograms. Opt. Commun., 16, 342-346(1976).

    [38] T.-C. Poon. Digital Holography and Three-Dimensional Display: Principles and Applications(2006).

    [39] C. Min, J. Liu, T. Lei, G. Si, Z. Xie, J. Lin, L. Du, X. Yuan. Plasmonic nano‐slits assisted polarization selective detour phase meta‐hologram. Laser Photonics Rev., 10, 978-985(2016).

    [40] J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett., 13, 4269-4274(2013).

    [41] Z. Xie, T. Lei, G. Si, X. Wang, J. Lin, C. Min, X. Yuan. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics, 4, 2158-2164(2017).

    [42] J. W. Goodman. Introduction to Fourier Optics(2005).

    [43] Y. Yang, H. Lin, B. Zhang, Y. Zhang, X. Zheng, A. Yu, M. Hong, B. Jia. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics, 6, 1033-1040(2019).

    [44] A. Sajjad, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [45] H. Liu, W. Dong, H. Wang, L. Lu, Q. Ruan, Y. Tan, R. E. Simpson, J. K. Yang. Rewritable color nanoprints in antimony trisulfide films. Sci. Adv., 6, eabb7171(2020).

    [46] O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. I. Khan, K. M. Neilson, C. Teichrib, T. Brown, E. Pop, D. W. Hewark. Enhanced meta-displays using advanced phase-change materials(2021).

    [47] M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios, Q. Du. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [48] M. A. Neil, R. Juškaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [49] K. Wicker, O. Mandula, G. Best, R. Fiolka, R. Heintzmann. Phase optimisation for structured illumination microscopy. Opt. Express, 21, 2032-2049(2013).

    Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454
    Download Citation