• Photonics Research
  • Vol. 11, Issue 2, 225 (2023)
Yingying Zhang1、†, Shiqiang Xia1、†,*, Xingdong Zhao1、5, Lu Qin1, Xuejing Feng1, Wenrong Qi1, Yajing Jiang1, Hai Lu1, Daohong Song2, Liqin Tang2、6, Zunlue Zhu1、7, Wuming Liu3, and Yufang Liu1、4
Author Affiliations
  • 1School of Physics, Henan Normal University, Xinxiang 453007, China
  • 2MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
  • 5e-mail: phyzhxd@gmail.com
  • 6e-mail: tanya@nankai.edu.cn
  • 7e-mail: zl-zhu@htu.edu.cn
  • show less
    DOI: 10.1364/PRJ.478167 Cite this Article Set citation alerts
    Yingying Zhang, Shiqiang Xia, Xingdong Zhao, Lu Qin, Xuejing Feng, Wenrong Qi, Yajing Jiang, Hai Lu, Daohong Song, Liqin Tang, Zunlue Zhu, Wuming Liu, Yufang Liu. Symmetry-protected third-order exceptional points in staggered flatband rhombic lattices[J]. Photonics Research, 2023, 11(2): 225 Copy Citation Text show less
    References

    [1] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017).

    [2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [3] Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [4] M.-A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [5] M. Parto, Y. G. Liu, B. Bahari, M. Khajavikhan, D. N. Christodoulides. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics, 10, 403-423(2021).

    [6] E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 93, 015005(2021).

    [7] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 126, 230402(2021).

    [8] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [9] S. Klaiman, U. Günther, N. Moiseyev. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett., 101, 080402(2008).

    [10] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [11] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [12] S. Malzard, C. Poli, H. Schomerus. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett., 115, 200402(2015).

    [13] H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 120, 146402(2018).

    [14] S. Xia, D. Kaltsas, D. Song, I. Komis, J. Xu, A. Szameit, H. Buljan, K. G. Makris, Z. Chen. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science, 372, 72-76(2021).

    [15] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [16] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [17] M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, M. Khajavikhan. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature, 576, 70-74(2019).

    [18] R. Duggan, S. A. Mann, A. Alù. Limitations of sensing at an exceptional point. ACS Photon., 9, 1554-1566(2022).

    [19] S. Longhi. PT symmetry and antisymmetry by anti-Hermitian wave coupling and nonlinear optical interactions. Opt. Lett., 43, 4025-4028(2018).

    [20] I. Mandal, E. J. Bergholtz. Symmetry and higher-order exceptional points. Phys. Rev. Lett., 127, 186601(2021).

    [21] P. Delplace, T. Yoshida, Y. Hatsugai. Symmetry-protected multifold exceptional points and their topological characterization. Phys. Rev. Lett., 127, 186602(2021).

    [22] K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, M. Ueda. Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics. Nat. Commun., 10, 297(2019).

    [23] K. Kawabata, K. Shiozaki, M. Ueda, M. Sato. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 9, 041015(2019).

    [24] T. Yoshida, T. Mizoguchi, Y. Kuno, Y. Hatsugai. Square-root topological phase with time-reversal and particle-hole symmetry. Phys. Rev. B, 103, 235130(2021).

    [25] J. D. H. Rivero, L. Ge. Chiral symmetry in non-Hermitian systems: product rule and Clifford algebra. Phys. Rev. B, 103, 014111(2021).

    [26] K. Sun, Z. Gu, H. Katsura, S. D. Sarma. Nearly flatbands with nontrivial topology. Phys. Rev. Lett., 106, 236803(2011).

    [27] N. B. Kopnin, T. T. Heikkilä, G. E. Volovik. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B, 83, 220503(2011).

    [28] L. Balents, C. R. Dean, D. K. Efetov, A. F. Young. Superconductivity and strong correlations in moiré flat bands. Nat. Phys., 16, 725-733(2020).

    [29] P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, F. Ye. Localization and delocalization of light in photonic Moiré lattices. Nature, 577, 42-46(2020).

    [30] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Meja-Cortés, S. Weimann, A. Szameit, M. I. Molina. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett., 114, 245503(2015).

    [31] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, R. R. Thomson. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett., 114, 245504(2015).

    [32] C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R. Gulevich, H. Schomerus, D. Vaitiekus, B. Royall, D. M. Whittaker, E. Clarke, I. V. Iorsh, I. A. Shelykh, M. S. Skolnick, D. N. Krizhanovskii. Exciton polaritons in a two-dimensional Lieb lattice with spin-orbit coupling. Phys. Rev. Lett., 120, 097401(2018).

    [33] D. Leykam, S. Flach. Perspective: photonic flatbands. APL Photon., 3, 070901(2018).

    [34] L. Tang, D. Song, S. Xia, S. Xia, J. Ma, W. Yan, Y. Hu, J. Xu, D. Leykam, Z. Chen. Photonic flat-band lattices and unconventional light localization. Nanophotonics, 9, 1161-1176(2020).

    [35] R. A. V. Poblete. Photonic flat band dynamics. Adv. Phys.: X, 6, 1878057(2021).

    [36] J.-W. Rhim, B.-J. Yang. Classification of flat bands according to the band-crossing singularity of Bloch wave functions. Phys. Rev. B, 99, 045107(2019).

    [37] J. Ma, J.-W. Rhim, L. Tang, S. Xia, H. Wang, X. Zheng, S. Xia, D. Song, Y. Hu, Y. Li, B.-J. Yang, D. Leykam, Z. Chen. Direct observation of flatband loop states arising from nontrivial real-space topology. Phys. Rev. Lett., 124, 183901(2020).

    [38] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, A. Szameit. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater., 16, 433-438(2017).

    [39] T. Biesenthal, M. Kremer, M. Heinrich, A. Szameit. Experimental realization of PT symmetric flat bands. Phys. Rev. Lett., 123, 183601(2019).

    [40] L. Jin. Flat band induced by the interplay of synthetic magnetic flux and non-Hermiticity. Phys. Rev. A, 99, 033810(2019).

    [41] B. Qi, L. Zhang, L. Ge. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 120, 093901(2018).

    [42] S. Longhi, L. Feng. Invited article: mitigation of dynamical instabilities in laser arrays via non-Hermitian coupling. APL Photon., 3, 060802(2018).

    [43] D. Leykam, S. Flach, Y. D. Chong. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B, 96, 064305(2017).

    [44] S. Xia, C. Danieli, Y. Zhang, X. Zhao, H. Lu, L. Tang, D. Li, D. Song, Z. Chen. Higher-order exceptional point and Landau–Zener Bloch oscillations in driven non-Hermitian photonic Lieb lattices. APL Photon., 6, 126106(2021).

    [45] S. Xia, A. Ramachandran, S. Xia, D. Li, X. Liu, L. Tang, Y. Hu, D. Song, J. Xu, D. Leykam, S. Flach, Z. Chen. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett., 121, 263902(2018).

    [46] J.-W. Rhim, K. Kim, B.-J. Yang. Quantum distance and anomalous landau levels of flat bands. Nature, 584, 59-63(2020).

    [47] L. Ge. Non-Hermitian lattices with a flat band and polynomial power increase. Photon. Res., 6, A10-A17(2018).

    [48] Y.-X. Xiao, K. Ding, R.-Y. Zhang, Z. H. Hang, C. T. Chan. Exceptional points make an astroid in non-Hermitian Lieb lattice: evolution and topological protection. Phys. Rev. B, 102, 245144(2020).

    [49] R. D. J. León-Montiel, M. A. Quiroz-Juárez, J. L. Domínguez-Juárez, R. Quintero-Torres, J. L. Aragón, A. K. Harter, Y. N. Joglekar. Observation of slowly decaying eigenmodes without exceptional points in Floquet dissipative synthetic circuits. Commun. Phys., 1, 88(2018).

    [50] M. A. Quiroz-Juárez, A. Perez-Leija, K. Tschernig, B. M. Rodríguez-Lara, O. S. Magana-Loaiza, K. Busch, Y. N. Joglekar, R. de J. León-Montiel. Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photon. Res., 7, 862-867(2019).

    [51] A. Ramachandran, A. Andreanov, S. Flach. Chiral flat bands: existence, engineering, and stability. Phys. Rev. B, 96, 161104(2017).

    [52] A. R. Kolovsky, A. Ramachandran, S. Flach. Topological flat Wannier-Stark bands. Phys. Rev. B, 97, 045120(2018).

    [53] S. Xia, C. Danieli, W. Yan, D. Li, S. Xia, J. Ma, H. Lu, D. Song, L. Tang, S. Flach, Z. Chen. Observation of quincunx-shaped and dipole-like flatband states in photonic rhombic lattices without band-touching. APL Photon., 5, 016107(2020).

    [54] M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg, A. Szameit. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat. Commun., 11, 907(2020).

    [55] S. M. Zhang, L. Jin. Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2, 033127(2020).

    [56] S. Xia, Y. Zhang, Z. Li, L. Qin, C. Yang, H. Lu, J. Zhang, X. Zhao, Z. Zhu. Band evolution and Landau-Zener Bloch oscillations in strained photonic rhombic lattices. Opt. Express, 29, 37503-37514(2021).

    [57] S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, N. Goldman. Experimental observation of Aharonov-Bohm cages in photonic lattices. Phys. Rev. Lett., 121, 075502(2018).

    [58] S. Mukherjee, R. R. Thomson. Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice. Opt. Lett., 40, 5443-5446(2015).

    [59] B. Midya, H. Zhao, L. Feng. Non-Hermitian photonics promises exceptional topology of light. Nat. Commun., 9, 2674(2018).

    [60] S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, P. Lu. Topological bound modes in anti-PT-symmetric optical waveguide arrays. Opt. Express, 27, 13858-13870(2019).

    [61] L. Du, Y. Zhang, J.-H. Wu. Controllable unidirectional transport and light trapping using a one-dimensional lattice with non-Hermitian coupling. Sci. Rep., 10, 1(2020).

    [62] R. Keil, C. Poli, M. Heinrich, J. Arkinstall, G. Weihs, H. Schomerus, A. Szameit. Universal sign control of coupling in tight-binding lattices. Phys. Rev. Lett., 116, 213901(2016).

    [63] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. PT-symmetric optical lattices. Phys. Rev. A, 81, 063807(2010).

    [64] J. Schnabel, H. Cartarius, J. Main, G. Wunner, W. D. Heiss. PT-symmetric waveguide system with evidence of a third-order exceptional point. Phys. Rev. A, 95, 053868(2017).

    [65] S. Longhi, D. Gatti, G. D. Valle. Robust light transport in non-Hermitian photonic lattices. Sci. Rep., 5, 13376(2015).

    [66] S. Longhi. Phase transitions in a non-Hermitian Aubry-André-Harper model. Phys. Rev. B, 103, 054203(2021).

    [67] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, C. T. Chan. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X, 6, 021007(2016).

    [68] M. Ezawa. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res., 4, 013195(2022).

    [69] G. G. Pyrialakos, H. Ren, P. S. Jung, M. Khajavikhan, D. N. Christodoulides. Thermalization dynamics of nonlinear non-Hermitian optical lattices. Phys. Rev. Lett., 128, 213901(2022).

    [70] I. Komis, D. Kaltsas, S. Xia, H. Buljan, Z. Chen, K. Makris. Robustness versus sensitivity in non-Hermitian topological lattices probed by pseudospectra. arXiv(2022).

    Yingying Zhang, Shiqiang Xia, Xingdong Zhao, Lu Qin, Xuejing Feng, Wenrong Qi, Yajing Jiang, Hai Lu, Daohong Song, Liqin Tang, Zunlue Zhu, Wuming Liu, Yufang Liu. Symmetry-protected third-order exceptional points in staggered flatband rhombic lattices[J]. Photonics Research, 2023, 11(2): 225
    Download Citation