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Higher-order exceptional points (EPs), which appear as multifold degeneracies in the spectra of non-Hermitian
systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher-order
EPs still remains a challenge due to the strict requirement of the system symmetries. Here we demonstrate that
higher-order EPs can be judiciously fabricated in parity–time (PT )-symmetric staggered rhombic lattices
by introducing not only on-site gain/loss but also non-Hermitian couplings. Zero-energy flatbands persist
and symmetry-protected third-order EPs (EP3s) arise in these systems owing to the non-Hermitian chiral/
sublattice symmetry, but distinct phase transitions and propagation dynamics occur. Specifically, the EP3 arises
at the Brillouin zone (BZ) boundary in the presence of on-site gain/loss. The single-site excitations display an
exponential power increase in the PT -broken phase. Meanwhile, a nearly flatband sustains when a small lattice
perturbation is applied. For the lattices with non-Hermitian couplings, however, the EP3 appears at the BZ
center. Quite remarkably, our analysis unveils a dynamical delocalization-localization transition for the excitation
of the dispersive bands and a quartic power increase beyond the EP3. Our scheme provides a new platform toward
the investigation of the higher-order EPs and can be further extended to the study of topological phase transitions
or nonlinear processes associated with higher-order EPs. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.478167

1. INTRODUCTION

Exceptional points (EPs), singularities at which eigenvalues and
eigenvectors simultaneously coalesce, have attracted consider-
able interest in non-Hermitian physics [1–7]. For instance,
EPs in the parity–time (PT )-symmetric optical arrangements
[8,9] have provided an excellent platform for exploring in-
triguing phenomena such as PT -symmetric lasers [10,11]
and topological phase transitions [12–14]. In particular, re-
cently, there has been a great deal of interest in proposing
various methods for constructing higher-order (greater than
second-order) EPs. The eigenvalue shift near the higher-order
EPs follows the ϵ1∕N (N is the order of the EPs) power law
of the external perturbation ϵ, therefore leading to higher sen-
sitivity of resonant optical structures to small external disturb-
ances [15–18]. Another interesting thing is that optical systems

with PT symmetry can show additional symmetries, such as
time-reversal symmetry and chiral symmetry (CS), making the
higher-order EPs much more abundant [19–21]. In fact, these
symmetries ramify and show new features in non-Hermitian
systems due to the fact that the Hamiltonian H ≠ H †. A cru-
cial example is CS which satisfies CHC−1 � −H . The CS co-
incides with sublattice symmetry (SLS) (SH †S−1 � −H ) in the
presence of Hermiticity. Obviously, they are not equivalent for
non-Hermitian Hamiltonians [22–25].

The study of EPs has also been extended to flatband sys-
tems. A flatband is dispersionless throughout the Brillouin zone
(BZ), and it provides a unique setting for exploring anomalous
magnetic phases and strongly correlated states of matter
[26–29]. In flatband systems, diffraction is suppressed due to
the destructive interference of the Bloch wave functions,
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resulting in typically compact localized states (CLSs) in real
space [30–37]. The most direct way to form a PT -symmetric
flatband system is to introduce on-site gain/loss to the lattices.
Recently, the PT -symmetric flatband photonic waveguide ar-
rays with tailored on-site gain/loss distributions have been ex-
perimentally created using a laser-written technique [38,39].
On the other hand, the non-Hermitian couplings describe
a situation where the mode amplitude undergoes gain/loss
while hopping between sites [40–42]. It has been shown that
the PT -symmetric frustrated lattices with fine-tuned non-
Hermitian couplings can also give rise to flatbands as well as
EPs [43]. More importantly, recent progress has demonstrated
that even the higher-order EPs can exist in the PT -symmetric
flatband lattices [20,21,44]. Nevertheless, due to the band
touching (vanishing bandgap) between flat and dispersive
bands, so far, realizations of the nonzero-valued higher-order
EPs have been limited to flatband systems with non-
Hermitian couplings [45–48]. Moreover, the distinct features
of the two aspects of non-Hermiticity (on-site gain/loss and
non-Hermitian couplings) as well as the dynamical behaviors
near the phase transitions, also remain elusive.

In this work, we demonstrate that a higher-order EP (EP3)
can occur in staggered rhombic lattices by introducing the
diagonal PT symmetry (with on-site gain/loss) and the off-
diagonal PT symmetry (with non-Hermitian couplings) to
the system. These PT -symmetric lattices possess both the
non-Hermitian CS and SLS, thus leading to the presence of
zero-energy flatbands and nonzero EP3s. However, the EP3
and the propagation dynamics of the lattices, unexpectedly,
show strikingly different properties. For the diagonal PT -
symmetric lattices, an EP3 arises at the BZ boundary. We find
that the single-site excitations of different sublattices display
identical exponential power increases in the PT -broken phase.
By contrast, an EP3 is generated in the BZ center for the
off-diagonal PT -symmetric lattices. Intriguing propagation dy-
namics, such as a dynamical delocalization-localization transi-
tion for the excitation of dispersive bands and a quartic power
increase beyond the EP3, are observed. For both diagonal and
off-diagonal PT -symmetric systems, the eigenvalue separations
exhibit an ∼ϵ1∕3 dependence in the vicinity of the EP3. In par-
ticular, we show that a nearly flatband sustains for the diagonal
PT -symmetric lattices in a small range of perturbations.

2. DIAGONAL PT -SYMMETRIC FLATBAND
RHOMBIC LATTICES

Symmetry-protected flatband and EP3. We start from introduc-
ing the diagonal PT -symmetric staggered photonic rhombic
lattices with on-site gain/loss to elucidate the lattice symmetry,
the formation of flatband and the EP3. Figure 1(a) shows the
lattice structure with each unit cell consisting of an edge site A
with gain γ, an edge site C with loss −γ, and a central neutral
site B. The sublattice B is fourfold connected with the nearest
neighbors, while the sublattices A and C have twofold connec-
tions with surrounding sites. The staggered couplings are
tL � t�1� g� and tR � t�1 − g�, where tL �tR� is the coupling
on the left (right) side of the site B. Note that tL �tR� is real and
represents conserved (Hermitian) coupling. Experimentally,
such non-Hermitian lattices can be obtained using the optically

induced method or the femtosecond laser-writing technique
[14,38,39]. The couplings depend on the spacing of the
neighboring waveguides; thus a staggered arrangement of the
distance between the waveguides generates staggered couplings.
Meanwhile, the need for optical amplification can be avoided
by shifting the respective lattice sites from γ, 0, and −γ to 0, −γ,
and −2γ [49,50]. As a consequence, the non-Hermitian envi-
ronments can be experimentally introduced only by inscribing
the waveguides with tailored loss distributions [14,39]. In the
tight binding model, the Hamiltonian can be written as

H �
X
n

�tLb†nan � tRb†nan�1 � tLb†ncn � tRb†ncn�1 �H:c:�

� iγ�a†nan − c†ncn�, (1)

where a†n (an), b†n (bn), and c†n (cn) are the creation (annihilation)
operators in the n-th unit cell on the A, B and C sites, respec-
tively. Transforming H into momentum space as H �P

k ψ
†
kHkψ k with ψ k � �ak, bk, ck�T , one can get the momen-

tum space Hamiltonian,

Hk �

0
B@

iγ tL � tReik 0

tL � tRe−ik 0 tL � tRe−ik

0 tL � tReik −iγ

1
CA: (2)

The diagonal terms ofHk describe the propagation constant
and on-site gain/loss, whereas the off-diagonal terms describe
the lattice couplings. Such a Hamiltonian possesses PT sym-
metry �PT �Hk�PT �−1 � H −k, and more importantly, a CS as
well as a SLS satisfying CHkC−1 � −Hk and SH †

kS
−1 � −Hk,

where the unitary operators C and S are defined as

Fig. 1. (a) Schematic of the diagonal PT -symmetric photonic
rhombic lattices formed by waveguide arrays without non-
Hermitian coupling. The unit cell consists of three sites: two edge sites
with gain γ (A, red) or loss − γ (C, blue), and one central site with a
neutral imaginary part (B, gray). The staggered coupling coefficients
are tL � t�1� g� and tR � t�1 − g�, where 0 ≤ g < 1 and t is the
coupling coefficient of uniform lattices (g � 0). For simplicity, we
set the lattice period l � 1. (b), (c) Calculated real (b) and imaginary
(c) parts of the spectrum as a function of γ∕t for g � 0.2. The red
circles represent the position of the EP3 and the corresponding critical
value of phase transition is γc∕t � 0.56. (d) Field distribution of a
flatband CLS, which occupies two unit cells. The characters show
the corresponding amplitudes.
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C �

0
B@

0 0 1

0 −1 0

1 0 0

1
CA, S �

0
B@

1 0 0

0 −1 0

0 0 1

1
CA: (3)

By calculating the eigenvalues of Hk, one can easily get the
three corresponding eigenvalues,

E0�k� � 0,

E�1�k� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ2 � 4t2�1� cos k� � 4t2g2�1 − cos k�

q
: (4)

In the Hermitian case (γ∕t � 0), the CS/SLS symmetry re-
quires all the energy eigenvalues appear in pairs, namely, the
three-band system must have a zero-energy flatband E0 � 0
and two dispersive bands with opposite energies E1 � −E−1

[51,52]. Figures 1(b) and 1(c) show the spectrum as a function
of γ∕t for g � 0.2. It can be clearly seen that the Hermitian spec-
trum in the limit γ∕t � 0 has three bands: a zero-energy flatband
located between two symmetric dispersive bands [dotted lines in
Fig. 1(b)]. Unlike in uniform lattices where all the bands touch
each other at k � π [53–55], here the band degeneracy is lifted
and two symmetric gaps with gap width E gap � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ2 � 8t2g2

p
emerge as a result of the staggered couplings. When the on-site
gain/loss is introduced (γ∕t ≠ 0), the energy eigenvalues be-
come complex. As mentioned above, the CS bifurcates into
CS and SLS in the non-Hermitian case. However, we find
both the CS and SLS are preserved. Meanwhile, they retain
E1 � −E−1 and non-Hermitian zero mode occurs for the central
band. As a consquence, the zero-energy flatband survives and the
spectrum stays symmetric about the imaginary and real energy
axis of the complex energy plane. The bandgaps decrease by in-
creasing γ∕t. More importantly, all the three eigenvalues coalesce
at E0 � 0 for the critical value γc∕t � 2

ffiffiffi
2

p
g � 0.56 [Figs. 1(b)

and 1(c)]. Note that γc depends on the value of g, i.e., the rela-
tive strength of the staggered couplings. The three eigenvectors
also coalesce at this specific degenerate point and have the

form �ψA
n ,ψB

n ,ψC
n ,ψA

n�1,ψ
C
n�1� � �0.8, − 0.2i, − 0.8,1.2, − 1.2�.

Accordingly, the spectrum is completely real for γ < γc, and a
CS/SLS-protected EP3 emerges at γ � γc . For γ > γc, the system
turns into the PT -broken phase. Figure 1(d) illustrates the irre-
ducible CLS of the flatband. As demonstrated in previous studies,
CLSs are localized in a single unit cell in Hermitian rhombic lat-
tices [56–58]. Here, in contrast, the CLS is confined in the five-
site-cross configurations in two adjacent unit cells. Nonzero
amplitudes appear in A and C sites and the on-site gain/loss re-
modulates the amplitude of the B site. The equal amplitude and
opposite phase ensure the destructive interference between the
two legs formed by the A and C sites.

Propagation dynamics for single-site excitation. To verify our
analysis, we simulate the light propagation dynamics for initial
excitations localized to either an A or B site. A sufficiently large
number of lattice sites (101 unit cells) are considered. The in-
put is an�0� or bn�0� � � ffiffiffi

π
p

∕σ�e−�n2∕σ2��σ � 0.5�, i.e., only
the central single site is excited. Experimentally, a Gaussian
beam is sent to the front facet of the sample as a probe beam,
and the output pattern can be monitored at the back facet of
the sample [14,34,39,53,54]. Figure 2 shows the evolution of
the beam intensity P�z� � P

n jψn�z�j2 �
P

n�jan�z�j2 �
jbn�z�j2 � jcn�z�j2�, where z is an effective propagation dis-
tance. For comparison, we first consider the result for the
Hermitian case at γ∕t � 0. A suppression of diffraction is ob-
served for the excitation of A site [Fig. 2(a)]. The input excites a
superposition of dispersive bands and flatband states. The en-
ergy is mainly distributed in the flatband; therefore, most of the
power remains confined to the initially excited site. When the
system is operated below the PT threshold value (γ∕t � 0.5),
part of the energy evolves into the dispersive bands, though
most of the energy still stays localized [Fig. 2(a2)]. It should
be noted that what is conserved here is the quasi-energy
Q�z� � P

n ψ�−n, z�ψ∗�n, z� as opposed to the actual power
P�z�. The presence of the gain/loss results in exponential

Fig. 2. Intensity profile jψ j2 of a single-site A (a1)–(a3) or B (b1)–(b3) excitation. (a1) The A sublattice excitation for Hermitian case (γ∕t � 0)
exhibits a suppression of diffraction due to the excitation of flatband CLSs. (a2) The input remains conserved below the EP3 threshold (γ∕t � 0.5).
(a3) The input leads to an exponentially growing total intensity in the PT -broken phase (γ∕t � 0.6). (b1) The B site excitation for Hermitian case
(γ∕t � 0), showing a typically discrete diffraction pattern. (b2) The input excites both the flatband and dispersive bands, producing discrete dif-
fraction as well as a residual localized component (γ∕t � 0.5). (b3) The input shows same exponential growth of total intensity as in (a3)
(γ∕t � 0.6). The propagation length is z � 20t−1. Note the different scales of the vertical axis in these panels, though the initial amplitudes
of the excitation all equal 1.
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amplification �P�z� ∼ ez � of the total power when the non-
Hermitian parameter is tuned to γ∕t � 0.6 [Fig. 2(a3)]
(see Appendix A). A different scenario is found when a localized
B site is excited. In Fig. 2(b1), the input generates a conven-
tional discrete diffraction pattern with two ballistically expand-
ing lobes for the Hermitian lattices. In this case, only the
dispersive bands are excited, since no flatband energy is distrib-
uted in the B sublattice [cf. Fig. 1(d)]. Nevertheless, the dis-
persive bands and flatband states, including the EP3 states,
are excited in the PT symmetry phase γ∕t � 0.5 [Fig. 2(b2)].
The resulting diffraction consists of a discrete pattern and con-
served total power as required for a PT -symmetric lattice in the
unbroken phase. Furthermore, there is a residual localized com-
ponent due to the excitation of the flatband. With the further
increase of γ∕t, the energy is also obviously amplified when the
system is operated in the PT symmetry broken phase for
γ∕t � 0.6 [Fig. 2(b3)]. Interestingly, we find that the power
growth is the same as that in Fig. 2(a3).

Bifurcations of eigenvalues around the EP3. In practical im-
plementations, the propagation of photons is subject to inevi-
table perturbations. As mentioned above, the eigenvalues
bifurcation characteristics of the higher-order EPs can enhance
the response of the optical structure to small disturbances.
In the following, we demonstrate the eigenvalues evolution of
our ternary PT -symmetric photonic structure around the EP3
and show how a small lattice perturbation affects the wave
propagation dynamics.

Note that the perturbation could be introduced anywhere
along the diagonal of the matrix Hk. For simplicity and with-
out loss of generality, we suppose that the perturbation ϵ is
imposed on the sublattice A. When fabricating the lattices us-
ing femtosecond or continuous-wave laser-writing technique
[14,34,39,53,54], the slight difference of the relative laser
power or “writing” time between A and other sublattices
will result in such a perturbation. The energy bands can be

analytically obtained through solving the cubic characteristic
equation (see Appendix B). Figures 3(a) and 3(b) illustrate ana-
lytical and numerical solutions for the real and imaginary parts
of the eigenvalues as a function of ϵ∕t. The small perturbation
ranges from 10−10 to 10−1. The analytical solutions show a good
agreement with numerical results. The perturbation drives the
system out of the degenerate state, and three complex eigenval-
ues are obtained. To have a quantitative comparison, we cal-
culate the numerical eigenvalue difference of the upper band in
Fig. 3(a) for ϵ∕t � 0.03 and ϵ∕t � 0.06, which are 0.1 and
0.15, respectively. The difference between the lower two eigen-
values (E0 and E1) is plotted in Fig. 3(c). Obviously, the
eigenvalues’ splitting increases along with the strength of the
perturbation. By considering the logarithmic behavior of this
curve, we find that the slope is about 1/3, which is exactly
the characteristic of an EP3 [Fig. 3(d)]. Another intriguing
feature is that both the real and imaginary parts of the central
band change slightly, especially for ϵ∕t < 0.03. This indi-
cates that an approximate flatband can be sustained in such
a range of perturbations.

The perturbation on the spectrum can also be reflected by
light propagation dynamics. For ϵ∕t � 0.03, one can find a
similar pattern for the excitation of B sublattice in Fig. 4(a),
which is compared with that in Fig. 2(a2). An increase of
the lattice perturbation (ϵ∕t � 0.06) results in an enhance-
ment of wave intensity in Fig. 4(b). The input behaves differ-
ently for the excitation of the flatband CLSs. An interesting
property of flatband is that, despite the nonzero couplings be-
tween lattice sites, propagation of flatband eigenstates is com-
pletely suppressed. Therefore, if we excite five sites according to
Fig. 1(d), we can observe a completely localized state with
z-invariant intensity. In Fig. 4(c), a CLS excitation can stay well
localized in the presence of ϵ∕t � 0.03, confirming that the
flatband can preserve in this case. Moreover, the input keeps
nearly localized, even when the lattice detuning is increased
up to ϵ∕t � 0.06, as shown in Fig. 4(d).

Fig. 3. (a), (b) Analytical (dashed lines) and numerical (solid lines)
results for the (a) real and (b) imaginary parts of the spectrum as a
function of the detuning ϵ∕t in the vicinity of EP3. Red lines,
E−1; green lines, E0; blue lines, E1. (c) Corresponding results for
E0 − E1 � ΔE , exhibiting a cube-root behavior; (d) results from
(c) on a logarithmic scale. The slope of about 1/3 confirms the
cube-root response.

Fig. 4. (a), (b) Intensity profile for the B site excitation in the pres-
ence of small perturbations ϵ∕t � 0.03 and ϵ∕t � 0.06, respectively.
For ϵ∕t � 0.03, a similar pattern compared with Fig. 2(b2) is ob-
tained. (c), (d) Same as (a), (b) but for the excitation of a flatband
CLS. The CLS can stay well localized despite the presence of the lattice
perturbations.
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3. OFF-DIAGONAL PT -SYMMETRIC FLATBAND
RHOMBIC LATTICES

Symmetry-protected flatband and EP3. The most intriguing pecu-
liarity of our scheme is that the non-Hermiticity can also be
introduced by employing the non-Hermitian couplings. Such
a system also possesses an EP3 and a flatband but exhibits differ-
ent features. As illustrated in Fig. 5(a), we maintain the geomet-
ric symmetry of the lattices in Fig. 1(a) and perform imaginary
processing on the coupling parameters. T L � tL � iγ, T 	

L �
tL − iγ, TR � tR � iγ, and T 	

R � tR − iγ are the complex-
valued coupling coefficients on the left (right) side of the site B,
respectively. These complex couplings can be regarded as the
phase of a hopping amplitude [59–61], which can be experimen-
tally realized by positioning auxiliary waveguide between adja-
cent waveguides [54,62]. This approach allows the flip of the
sign of the coupling amplitude and obtaining an effective neg-
ative coupling. Embedding such a negative hopping amplitude
inside the structure can realize an artificial magnetic field of θ
flux for the photons, i.e., when a particle goes around a plaquette
�An → Bn → Cn → Bn−1 → An�, it collects the negative sign,
which is equivalent to an eiθ phase. In this case, the Hamiltonian
can be written as

H �
X
n

�T Lb†nan�TRb†nan�1�T 	
Lb

†
ncn�T 	

Rb
†
ncn�1�H:c:�:

(5)

The corresponding Hamiltonian in momentum space is

Hk �

0
B@

0 T L � T Reik 0

T L � T Re−ik 0 T 	
L � T 	

Re
−ik

0 T 	
L � T 	

Re
ik 0

1
CA, (6)

which satisfies the PT symmetry �PT �Hk�PT �−1 � H −k.
Interestingly, one can find that such an arrangement also pos-
sesses CS and SLS. Here, the unitary operators C and S can be
set as

C �

0
B@

1 0 0

0 −1 0

0 0 1

1
CA, S �

0
B@

0 0 1

0 −1 0

1 0 0

1
CA: (7)

The energy eigenvalues of Hamiltonian [Eq. (6)] are

E0�k� � 0,

E�1�k� � �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2 − γ2��1� cos k� � g2t2�1 − cos k�

q
: (8)

For direct comparison of the two non-Hermitian arrange-
ments, we also set g � 0.2 and plot the real and imaginary parts
of the spectrum [as shown in Figs. 5(b) and 5(c)]. Due to the
presence of CS and SLS, the central flatband still survives, and
the three bands distribute symmetrically. With the increase in
γ∕t, the bandgap tends to narrow and merge. In contrast, here,
the PT symmetry-broken transition occurs at the center of the
BZ (k � 0), and the critical value is γc � t, i.e., is invariable
and independent of the value of g. The eigenmodes of the
bands also coalesce into a degenerated one, namely, a CS/SLS-
protected EP3 is generated. Above the EP3, the spectrum be-
comes complex. In addition, the irreducible flatband CLS also
occupies two unit cells, but the energy only distributes in A
and C sites, as shown in Fig. 5(d).

Propagation dynamics for single-site excitation. In Fig. 6, we
illustrate the propagation dynamics of the system for the same
initial excitations as in Fig. 2. Similar patterns as depicted in
Figs. 2(a1) and 2(b1) can be obtained in the Hermitian limit
γ∕t � 0. However, diverse propagation dynamics can be ob-
served for γ∕t ≠ 0. The input experiences periodical oscilla-
tions for the A site excitation due to the unfolding of the
nonorthogonal Floquet–Bloch modes in PT symmetry phase
γ∕t < 1 [Figs. 6(a1) and 6(a2)]. The beat length, which is
equal to L � 2π∕�δE� (δE is the difference between the propa-
gation constants of two modes), increases as γ∕t approaches the
EP3 [9,63,64]. As can be found in Fig. 6(a2), the oscillation is
enhanced and has a double period for γ∕t � 0.9. The beat
length goes to infinity as the EP3 is approached. Furthermore,
we observe a sharp transition in Fig. 6(a3). The input becomes
localized and leads to a quartic power increase �P�z� ∼ z4� in
the PT symmetry-broken phase (see Appendix A). The dy-
namics exhibited in Figs. 6(b1)–6(b3) is distinct from that
in Figs. 6(a1)–6(a3). Transport is always ballistic in the
PT -symmetry phase (γ∕t < 1) for the B site excitation. In this
case, the input will never excite the flatband CLSs [cf.
Fig. 5(d)], and thus no localized component appears. More
saliently, the excitation displays a transition from ballistic
wave packet spreading to dynamical localization, as the non-
Hermitian parameter γ∕t is increased to the value at the EP3.
In Figs. 6(b1) and 6(b2), the excitation propagates bidirection-
ally along the lattice with the spreading speed ν ∼ σ�z�∕z, where
the position operator σ2 � P

n n2ψ2
n∕

P
n ψ

2
n. ν decreases as

γ∕t is increased and the wave packet spreading decreases faster
for large γ∕t (see Appendix C). When γ∕t approaches the EP3,
the diffraction is prevented. In fact, the largest velocity at which

Fig. 5. (a) Schematic of the off-diagonal PT -symmetric photonic
rhombic lattices formed by waveguide arrays with non-Hermitian
coupling. The complex-coupling coefficients are T L � tL � iγ,
T 	

L � tL − iγ, TR � tR � iγ, and T 	
R � tR − iγ, respectively. Note

that the real parts (tL and tR) are the same as in Fig. 1(a), which re-
present conserved staggered couplings. (b), (c) Calculated (b) real and
(c) imaginary parts of the spectrum as a function of γ∕t for g � 0.2;
the EP3 forms at k � 0 and the critical value of the phase transition is
γc � t. (d) Field distribution of the flatband CLS, which also occupies
two unit cells but only distributes in A and C sites.
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an excitation propagates along the lattice can also be described
by the group velocity νg � Ref�dE∕dk�k�π∕2g. As the γ∕t is in-
creased, the energy spectrum in Fig. 5(b) undergoes a deforma-
tion, which changes the dispersion relation and results in
a decrease of νg [65,66]. This fact can be used for a direct ob-
servation of the EP: the propagation constants approach when
the non-Hermitian parameter is increased to the value at the
EP3. Though the total intensity in Fig. 6(b3) is much smaller
than that in Fig. 6(a3), we find that it also follows a quartic power
increase in the PT symmetry-broken phase.

Bifurcations of eigenvalues around the EP3. Similarly, we cal-
culate the spectrum separation of the system in the presence of
the external perturbations. The eigenvalues’ difference depicted
in Fig. 7 also has a 1/3 power law of the external perturbation
[Figs. 7(c) and 7(d)]. Note that the changes of the actual value
of both the dispersive bands and flatband are greater compared
with that in Fig. 3. For instance, the numerical eigenvalue
difference in Fig. 7(a) for ϵ∕t � 0.03 and ϵ∕t � 0.06 is

0.54 and 0.69, respectively. In addition, we find that the imagi-
nary part of the central band is identical to the upper band,
indicating that the flatband transforms into a dispersive band
[Fig. 7(b)].

Figure 8 displays the corresponding propagation dynamics
in the presence of the lattice perturbations. For B site excita-
tion, the energy becomes obviously amplified for ϵ∕t � 0.06
due to the complex spectrum [Fig. 8(b)]. More importantly,
one can clearly find that the CLSs no longer exist even when
only a small perturbation is applied [Fig. 8(c)], and the pattern
in Fig. 8(d) is similar to Fig. 8(b). These results reveal that the
flatband is readily destroyed and evolves into a complex disper-
sive band as a result of the lattice perturbations.

4. CONCLUSION

In summary, we have demonstrated a feasible scheme to
realize higher-order EPs (EP3s) in flatband rhombic lattices.

Fig. 6. Same as Fig. 2, but for the off-diagonal PT -symmetric lattices. (a1) The A sublattice excitation oscillates periodically below the EP3
threshold (γ∕t � 0.45). Most of the energy stays localized due to the excitation of the flatband. (a2) The quasi-energy is conserved, and the os-
cillation period is doubled for γ∕t � 0.9. (a3) The input leads to quartic total intensity growth once the system is operated in the PT symmetry-
broken phase (γ∕t � 1.001). (b1) The B input only excites eigenstates of the dispersive bands and therefore experiences conventional diffraction.
(b2) The spreading velocity diminishes with the increase of γ∕t. (b3) The input becomes localized, and the total intensity also show a quartic increase
in the PT symmetry-broken phase.

Fig. 7. Same as Fig. 3, but for the off-diagonal PT -symmetric
lattices.

Fig. 8. Same as Fig. 4, but for the off-diagonal PT -symmetric
lattices.
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By introducing on-site gain/loss and non-Hermitian couplings,
we have established a diagonal PT -symmetric and an off-
diagonal PT -symmetric rhombic lattices, respectively. Further-
more, we have made careful consideration of the distributions
of the higher-order EPs and the dynamical behaviors around
them. It has been shown that the systems possess both the
non-Hermitian CS and SLS, thus leading to the presence of
zero-energy flatbands and nonzero EP3. We have also observed
varied propagation dynamics in these systems, such as sustained
flatband CLSs, exponential and quartic power increase, as well
as dynamical localization. These results provide insightful in-
formation about the underlying properties of the higher-order
EPs in flatband systems. In future works, it will be interesting
to investigate higher-order EPs in other flatband lattices. For
example, one may realize the order of EPs greater than 3 in
a one-dimensional Lieb lattice, which consist of five bands in-
cluding a flatband [51]. Meanwhile, it will also be interesting to
study a wide range of phenomena, such as the non-Hermitian
topological phase transitions, anomalous edge states, and non-
linear optical processes in these systems [59,67–70].

APPENDIX A: THE ENERGY AMPLIFICATION
IN THE PT SYMMETRY-BROKEN PHASE

A localized single-site excitation in these PT -symmetric lattices
can display exponential and quartic power increases in the PT
symmetry-broken phase. Specifically speaking, for the diagonal
PT -symmetric lattices, the power increases for the excitation
of A and B sites are identical and follow an exponential

amplification �P�z� � e0.39z � [green line in Fig. 9(a)]. For the
off-diagonal PT -symmetric lattices, the power increase follows
quartic amplifications �P�z� ∼ z4�. However, the energy ampli-
fication is greater for the excitation of the A site [Fig. 9(b)].
As can be seen in Fig. 9(d), the corresponding intensities P1∕4

increase linearly, but the two lines have different slopes.

APPENDIX B: EIGENVALUE EVOLUTIONS OF
THE PT -SYMMETRIC LATTICES

Here, we provide an analytical study of the eigenvalue evolu-
tions of our PT -symmetric structure in the vicinity of the EP3.
For simplicity, we only discuss the case of perturbing the gain
sublattice A. As a result, the perturbation terms only appear
along the diagonal element of Hk. For the diagonal PT -
symmetric lattices, the Hamiltonian Hk can be written as

Hk �

0
B@

iγ � ϵ tL � tReik 0

tL � tRe−ik 0 tL � tRe−ik

0 tL � tReik −iγ

1
CA: (B1)

The corresponding determinant of Hk equated to zero is�������
−En � iγ � ϵ tL � tReik 0

tL � tRe−ik −En tL � tRe−ik

0 tL � tReik −En − iγ

�������
� 0: (B2)

The energy bands can be analytically obtained through solv-
ing the cubic characteristic equation, which is simplified to

0 � E3
n − E2

nϵ − En�iγϵ − γ2 � 2A� � ϵA, (B3)

where γc − 2A � 0, because A � t2L � t2R � 2tLtR cos k �
0.16t2 at the EP3 (k � π, γc∕t � 2

ffiffiffi
2

p
g). By means of the

Newton–Puiseux series En ∼ c1ϵ1∕3 � c2ϵ2∕3 (c1 and c2 are
complex constants), we can expand the above equation by
perturbation,

0� �c31 �A�ϵ3∕3 ��3c21c2 − iγc1�ϵ4∕3
��3c1c22 − c21 − c2iγ�ϵ5∕3 � �c32 − 2c1c2�ϵ6∕3−c22ϵ7∕3: (B4)

Forcing the coefficients of the first two terms to be zero,
we obtain three sets of values for the coefficients c1 and c2,
corresponding to the three eigenvalues,

E−1 ∼
ffiffiffiffiffi
4

25

3

r
eiπ∕3ϵ1∕3 �

ffiffiffiffiffi
4

25

3

r
i

ffiffiffi
2

p

3
e−iπ∕3ϵ2∕3,

E0 ∼
ffiffiffiffiffi
4

25

3

r
e−iπ∕3ϵ1∕3 �

ffiffiffiffiffi
4

25

3

r
i

ffiffiffi
2

p

3
eiπ∕3ϵ2∕3,

E1 ∼ −

ffiffiffiffiffi
4

25

3

r
eiπ∕3ϵ1∕3 −

ffiffiffiffiffi
4

25

3

r
i

ffiffiffi
2

p

3
e−iπ∕3ϵ2∕3: (B5)

Similarly, we can get the results of the off-diagonal PT -
symmetric system. The Hamiltonian Hk can be written as

Hk �

0
B@

ϵ T L �T Reik 0

T L �TRe−ik 0 T 	
L �T 	

Re
−ik

0 T 	
L �T 	

Re
ik 0

1
CA: (B6)

Fig. 9. Energy evolution in the symmetry-broken phase of the
(a) diagonal and (b)–(d) off-diagonal PT -symmetric lattices. (a) The
power increase for the excitation of A and B sublattices is identical and
follows an exponential amplification �P�z� � e0.39z �. (b)–(d) The
power increases for the excitation of (b) A and (c) B sublattices follow
quartic amplifications �P�z� ∼ z4�, and the corresponding intensities
P1∕4 increase linearly. Note that the two lines in (d) have different
slopes.
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The determinant of Hk equated to zero is�������
−En � ϵ T L � T Reik 0

T L � TRe−ik −En T L � T Re−ik

0 T L � T Reik −En

�������
� 0: (B7)

Here, A � T 2
L � T 2

R � 2T LT R cos k � 8i and A	 �
T 	2

L � T 	2
R � 2T 	

LT
	
R cos k � −8i at the EP3 (k � 0,

γc∕t � 1). So, the determinant can be simplified to
0 � E3

n − E2
nϵ� ϵA	: (B8)

Using the Newtonian series expansion for En ∼ c1ϵ1∕3 �
c2ϵ2∕3, one can get
0 � �c31 − 8i�ϵ3∕3 � 3c21c2ϵ

4∕3 � �3c1c22 − c21 − c2iγ�ϵ5∕3
� �c32 − 2c1c2�ϵ6∕3 − c22ϵ7∕3: (B9)

The bifurcations in the eigenvalues have the form
E−1 ∼ 2ei5π∕6ϵ1∕3,

E0 ∼ 2eiπ∕6ϵ1∕3,

E1 ∼ −2iϵ1∕3: (B10)

APPENDIX C: THE SPREADING VELOCITY ν
FOR THE B SITE EXCITATION OF THE OFF-
DIAGONAL PT -SYMMETRIC LATTICES

For the off-diagonal PT -symmetric lattices, the B site excita-
tion displays a transition from the ballistic wave packet spread-
ing to dynamical localization. As can be seen in Fig. 10(a), the
diffraction is prevented when the non-Hermitian parameter
γ∕t approaches the value at the EP3. Meanwhile, the spreading
speed ν decreases faster for large γ∕t, as shown in Fig. 10(b).
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