• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210546 (2021)
Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, and Jingjun Xu
Author Affiliations
  • MOE, Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.3788/IRLA20210546 Cite this Article
    Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210546 Copy Citation Text show less
    References

    [1] Courjal N, Bernal Mp, Caspar A, et al. Lithium niobate optical waveguides microwaveguides [OLM].[20180815]http:www.intechopen.comchapters61408.

    [2] H Jin, F M Liu, P Xu, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Physical Review Letters, 113, 103601(2014).

    [3] G Poberaj, H Hu, W Sohler, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & Photonics Reviews, 6, 488-503(2012).

    [4] J Lin, F Bo, Y Cheng, et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 8, 1910-1936(2020).

    [5] Y Kong, F Bo, W Wang, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices. Advanced Materials, 32, 1806452(2020).

    [6] M Li, J Ling, Y He, et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications, 11, 4123(2020).

    [7] M He, M Xu, Y Ren, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbits−1 and beyond. Nature Photonics, 13, 359-364(2019).

    [8] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [9] J Lu, Sayem A Al, Z Gong, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

    [10] L Zhang, Z Hao, Q Luo, et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Optics Letters, 45, 3353-3356(2020).

    [11] Z Hao, L Zhang, W Mao, et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Research, 8, 311-317(2020).

    [12] J Lu, J B Surya, X Liu, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 6, 1455-1460(2019).

    [13] J Y Chen, ZH Ma, Y M Sua, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [14] Z Hao, L Zhang, A Gao, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China Physics, Mechanics & Astronomy, 61, 114211(2018).

    [15] Y He, Q F Yang, J Ling, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [16] M Zhang, B Buscaino, C Wang, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [17] C Wang, M Zhang, M Yu, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).

    [18] Z Gong, X Liu, Y Xu, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Optics Letters, 44, 3182-3185(2019).

    [19] Z Gong, X Liu, Y Xu, et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [20] Gao R, Zhang H, Bo F, et al. Broadb highly efficient nonlinear optical processes in onchip integrated lithium niobate microdisk resonats of Qfact above 10^8 [J]. arXiv, 2021: 00399.

    [21] B Desiatov, M Lončar. Silicon photodetector for integrated lithium niobate photonics. Applied Physics Letters, 115, 121108(2019).

    [22] Izabella P, Surma B, Marek S, et al. Single crystal growth optical properties of LiNbO3 doped with Er3+, Tm3+ Mg2+[C]Proc SPIE, 1995: 6573.

    [23] M Palatnikov, I Biryukova, N Sidorov, . et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals. Journal of Crystal Growth, 291, 390-397(2006).

    [24] W Sohler, B K Das, D Dey, et al. Erbium-doped lithium niobate waveguide lasers. Ieice Transactions On Electronics, 88, 990-997(2005).

    [25] M Fleuster, C Buchal, E Snoeks, et al. Optical and structural properties of MeV erbium‐implanted LiNbO3. Journal of Applied Physics, 75, 173-180(1994).

    [26] S Dutta, E A Goldschmidt, S Barik, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Letters, 20, 741-747(2020).

    [27] S Wang, L Yang, R Cheng, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Applied Physics Letters, 116, 151103(2020).

    [28] D Pak, H An, A Nandi, et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate. Journal Of Applied Physics, 128, 084302(2020).

    [29] K Xia, F Sardi, C Sauerzapf, . et al. High-speed tunable microcavities coupled to rare-earth quantum emitters. arXiv, 2104, 00389(2021).

    [30] L Yang, S Wang, M Shen, et al. Photonic integration of Er3+: Y2SiO5 with thin-film lithium niobate by flip chip bonding. Optics Express, 29, 15497-15504(2021).

    [31] Y Jia, Y Yao, S Wang, et al. Dual-color upconversion luminescence emission from Er: LiNbO3 on-chip ridge waveguides. Results in Physics, 27, 104526(2021).

    [32] L He, Ş K Özdemir, L Yang. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 7, 60-82(2013).

    [33] L Yang, T Carmon, B Min, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Applied Physics Letters, 86, 091114(2005).

    [34] Z Wang, Z Fang, Z Liu, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Optics Letters, 46, 380-383(2021).

    [35] Y Liu, X Yan, J Wu, et al. On-chip erbium-doped lithium niobate microcavity laser. Science China Physics, Mechanics & Astronomy, 64, 234262(2021).

    [36] Q Luo, Z Hao, C Yang, et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Science China Physics, Mechanics & Astronomy, 64, 234263(2021).

    [37] Q Luo, C Yang, R Zhang, et al. On-chip erbium-doped lithium niobate microring lasers. Optics Letters, 46, 3275-3278(2021).

    [38] D Yin, Y Zhou, Z Liu, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Optics Letters, 46, 2127-2130(2021).

    [39] Z Yang, J Lu, M Zhuge, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing. Advanced Materials, 31, 1900647(2019).

    [40] R Gao, J Guan, N Yao, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Optics Letters, 46, 3131-3134(2021).

    [41] R Zhang, C Yang, Z Hao, et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Science China Physics, Mechanics & Astronomy, 64, 294216(2021).

    [42] Z Xiao, K Wu, M Cai, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Optics Letters, 46, 432921(2021).

    [43] T Li, K Wu, M Cai, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [44] J Lin, S Farajollahi, Z Fang, et al. Coherent mode-combined ultra-narrow-linewidth single-mode micro-disk. arXiv, 2104, 08843(2021).

    Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210546
    Download Citation