• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 72701 (2018)
Wu Daoyong1 and Lu Daoming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.072701 Cite this Article Set citation alerts
    Wu Daoyong, Lu Daoming. Geometrical Quantum Discord in T-Shaped Cavity-Fiber System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72701 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 79(11): 1895-1899.

    [2] Ekert A K. Quantum cryptography based on Bell′s theorem[J]. Physical Reviews Letters, 1991, 67(3): 661-663.

    [3] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): R2493-R2496.

    [4] Yan L. Effect of interatomic distance in photonic band gap on enatanglement evolution property among three atoms[J]. Acta Optica Sinica, 2017, 37(8): 0827001.

    [5] Zheng X L, Zhang B. Quantum entanglement and correlations between two qubits induced by heat bath[J]. Acta Optica Sinica, 2014, 34(1): 0127002.

    [6] Cong H L, Ren X Z. Exact solutions of energy spectrum and quantum entanglement in Tavis-Cummings model[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092701.

    [7] Olliver H, Zurek W H. Quantum discord: A measure of the quantumness of correlations[J]. Physical Review Letters, 2002, 88(1): 017901.

    [8] Wang B, Xu Z Y, Chen Z Q, et al. Non-Markovian effect on the quantum discord[J]. Physical Review A, 2010, 81(1): 014101.

    [9] Liu Z J, Miao H L, Jiang W, et al. Ground-state quantum discord in coupled cavities[J]. International Journal of Theoretical Physics, 2015, 54(3): 821-829.

    [10] Hu Y H, Tan Y G, Liu Q. Entanglement and quantum discord in a double J-C model with intensity-dependent coupling[J]. Acta Physics Sinica, 2013, 62(7): 074202.

    [11] Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement[J]. Physical Review Letters, 2008, 101(20): 200501.

    [12] Xu P, Wu T, Ye L. The quantum correlation of the Werner state under quantum decoherence[J]. International Journal of Theoretical Physics, 2015, 54(6): 1958-1967.

    [13] Chen Q, Zhang C J, Yu S X, et al. Quantum discord of two-qubit X states[J]. Physical Review A, 2013, 84(4): 042313.

    [14] Bai Y K, Zhang N, Ye M Y, et al. Exploring multipartite quantum correlations with the square of quantum discord[J]. Physical Review A, 2013, 88(1): 012123.

    [15] Giorgi G L. Quantum discord and remote state preparation[J]. Physical Review A, 88(2): 022315.

    [16] Wang C L, Shen J, Yi X X. Discord under the influence of a quantum phase transition[J]. Chinese Physics B, 2011, 20(5): 050306.

    [17] Zhang Y, Liu J M, Li Y J. Quantum discord dynamics of three qubits in non-Markovian environments[J]. Communication Theoretical Physics, 2014, 61(5): 691-698.

    [18] Zou H M, Fang M F. Discord and entanglement in non-Markovian environments at finite temperatures[J]. Chinese Physics B, 2016, 25(9): 090302.

    [19] Dakic B, Vedral V, Brukner C. Necessary and sufficient condition for nonzero quantum discord[J]. Physical Review Letters, 2010, 105(19): 190502.

    [20] Fan K M, Zhang G F. The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model[J]. Acta Physica Sinica, 2013, 62(13): 130301.

    [21] Chen H, Fu Y Q, Fang J X. Geometric discord of non-X-structured state under decoherence channels[J]. International Journal of Theoretical Physics, 2014, 53(9): 2967-2979.

    [22] Jiang F J, Lu H J, Hu Y X, et al. A symmetric geometric measure and the dynamics of quantum discord[J]. Chinese Physics B, 2013, 22(4): 040303.

    [23] Yin Z Q, Li F L. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber[J]. Physical Review A, 2007, 75(1): 012324.

    [24] Yang C P, Su Q P, Han S. Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction[J]. Physical Review A, 2012, 86(2): 022329.

    [25] Huang X B, Zhong Z R, Chen Y H. Deterministic generation of four-atom entangled state in a two-dimensional coupled-cavity system[J]. International Journalof Theoretical Physics, 2016, 55(2): 1192-1200.

    [26] Pellizzari T. Quantum networking with optical fibres[J]. Physical Review Letters, 1997, 79(26): 5242-5245.

    [27] Ogden C D, Irish E K, Kim M S. Dynamics in a coupled-cavity array[J]. Physical Review A, 2008, 78(6): 063805.

    [28] Ye S Y, Zhong Z R, Zheng S B. Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities[J]. Physical Review A, 2008, 77(1): 014303.

    [29] Zheng S B, Yang Z B, Xia Y. Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities[J]. Physical Review A, 2010, 81(1): 015804.

    [30] Serafini A, Mancini S, Bose S. Distributed quantum computation via optical fibers[J]. Physical Review Letters, 2006, 96(1): 010503.

    [31] Lu D M, Qiu C D. The tripartite entanglement dynamics in the coupled cavities QED system via optical fibers[J]. Acta Optica Sinica, 2015, 35(12): 1202002.