• Photonics Research
  • Vol. 9, Issue 8, 1569 (2021)
Yuansheng Tao1, Haowen Shu1, Xingjun Wang1、2、3、4、*, Ming Jin1, Zihan Tao1, Fenghe Yang3, Jingbo Shi1, and Jun Qin1
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 2Frontier Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
  • 3Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 4Peng Cheng Laboratory, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.427393 Cite this Article Set citation alerts
    Yuansheng Tao, Haowen Shu, Xingjun Wang, Ming Jin, Zihan Tao, Fenghe Yang, Jingbo Shi, Jun Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response[J]. Photonics Research, 2021, 9(8): 1569 Copy Citation Text show less
    References

    [1] S. Pan, Y. Zhang. Microwave photonic radars. J. Lightwave Technol., 38, 5450-5484(2020).

    [2] C. Liu, J. Wang, L. Cheng, M. Zhu, G.-K. Chang. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightwave Technol., 32, 3452-3460(2014).

    [3] J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, J. Capmany. Microwave photonics for optical sensors. IEEE J. Sel. Top. Quantum Electron., 23, 327-339(2017).

    [4] Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K.-J. Boller, A. J. Lowery. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and mHz-band selectivity. Nanophotonics, 7, 421-454(2018).

    [5] Y. Liu, A. Choudhary, D. Marpaung, B. J. Eggleton. Integrated microwave photonic filters. Adv. Opt. Photon., 12, 485-555(2020).

    [6] S. Dang, O. Amin, B. Shihada, M.-S. Alouini. What should 6G be?. Nat. Electron., 3, 20-29(2020).

    [7] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, J. Wang. 6G technologies: key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag., 14, 18-27(2019).

    [8] W. Peng, I. Hunter. Electronically tunable filters. IEEE Microw. Mag., 10, 46-54(2009).

    [9] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [10] J. Yao. Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag., 16, 46-60(2015).

    [11] F. Zeng, J. Yao. All-optical bandpass microwave filter based on an electro-optic phase modulator. Opt. Express, 12, 3814-3819(2004).

    [12] W. Li, M. Li, J. Yao. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microw. Theory Tech., 60, 1287-1296(2012).

    [13] W. Zhang, R. A. Minasian. Switchable and tunable microwave photonic Brillouin-based filter. IEEE Photon. J., 4, 1443-1455(2012).

    [14] X. Han, J. Yao. Bandstop-to-bandpass microwave photonic filter using a phase-shifted fiber Bragg grating. J. Lightwave Technol., 33, 5133-5139(2015).

    [15] M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, L. C. Kimerling. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators. J. Lightwave Technol., 27, 2105-2110(2009).

    [16] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

    [17] E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, L. A. Coldren. Programmable photonic microwave filters monolithically integrated in InP–InGaAsP. J. Lightwave Technol., 29, 1611-1619(2011).

    [18] M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, J. Azaña. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express, 21, 25120-25147(2013).

    [19] X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol., 32, 3557-3565(2014).

    [20] X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J. Lightwave Technol., 37, 1288-1295(2019).

    [21] D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, B. J. Eggleton. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76-83(2015).

    [22] M. Garrett, Y. Liu, P. Ma, D.-Y. Choi, S. J. Madden, B. J. Eggleton. Low-RF-loss and large-rejection reconfigurable Brillouin-based RF photonic bandpass filter. Opt. Lett., 45, 3705-3708(2020).

    [23] J. S. Fandiño, P. Muñoz, D. Doménech, J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2017).

    [24] M. H. Idjadi, F. Aflatouni. Nanophotonic phase noise filter in silicon. Nat. Photonics, 14, 234-239(2020).

    [25] W. Zhang, J. Yao. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett., 43, 3622-3625(2018).

    [26] L. Xu, J. Hou, H. Tang, Y. Yu, Y. Yu, X. Shu, X. Zhang. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth. Photon. Res., 7, 110-115(2019).

    [27] R. W. Ridgway, C. L. Dohrman, J. A. Conway. Microwave photonics programs at DARPA. J. Lightwave Technol., 32, 3428-3439(2014).

    [28] E. J. Naglich, J. Lee, D. Peroulis, W. J. Chappell. A tunable bandpass-to-bandstop reconfigurable filter with independent bandwidths and tunable response shape. IEEE Trans. Microwave Theory Tech., 58, 3770-3779(2010).

    [29] J. Lee, E. J. Naglich, H. H. Sigmarsson, D. Peroulis, W. J. Chappell. New bandstop filter circuit topology and its application to design of a bandstop-to-bandpass switchable filter. IEEE Trans. Microwave Theory Tech., 61, 1114-1123(2013).

    [30] R. A. Minasian. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J. Quantum Electron., 52, 0600813(2015).

    [31] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [32] J. Kim, S. Aghaeimeibodi, J. Carolan, D. Englund, E. Waks. Hybrid integration methods for on-chip quantum photonics. Optica, 7, 291-308(2020).

    [33] Y. Gao, J.-C. Lo, S. Lee, R. Patel, L. Zhu, J. Nee, D. Tsou, R. Carney, J. Sun. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control. J. Lightwave Technol., 38, 265-271(2020).

    [34] B. Snyder, B. Corbett, P. O’Brien. Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit. J. Lightwave Technol., 31, 3934-3942(2013).

    [35] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [36] M. Blaicher, M. R. Billah, J. Kemal, T. Hoose, P. Marin-Palomo, A. Hofmann, Y. Kutuvantavida, C. Kieninger, P.-I. Dietrich, M. Lauermann, S. Wolf, U. Troppenz, M. Moehrle, F. Merget, S. Skacel, J. Witzens, S. Randel, W. Freude, C. Koos. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl., 9, 71(2020).

    [37] A. Novack, M. Streshinsky, T. N. Huynh, T. Galfsky, M. Hochberg. A silicon photonic transceiver and hybrid tunable laser for 64  Gbaud coherent communication. Optical Fiber Communication Conference, Th4D.4(2018).

    [38] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).

    [39] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [40] Q. Deng, L. Liu, X. Li, Z. Zhou. Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett., 39, 5590-5593(2014).

    [41] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [42] X. Guo, Y. Liu, T. Yin, B. Morrison, M. Pagani, O. Daulay, W. Bogaerts, B. J. Eggleton, A. Casas-Bedoya, D. Marpaung. Versatile silicon microwave photonic spectral shaper. APL Photon., 6, 036106(2021).

    [43] Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, B. J. Eggleton. Link performance optimization of chip-based Si3N4 microwave photonic filters. J. Lightwave Technol., 36, 4361-4370(2018).

    [44] E. J. Naglich, A. C. Guyette, D. Peroulis. High-Q intrinsically-switched quasi-absorptive tunable bandstop filter with electrically-short resonators. IEEE MTT-S International Microwave Symposium (IMS), 1-4(2014).

    [45] A. Boutejdar, A. Ibrahim, W. Ali. Design of compact size and tunable band pass filter for WLAN applications. Electron. Lett., 52, 1996-1997(2016).

    [46] Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. Casas-Bedoya, T. G. Nguyen, D.-Y. Choi, P. Ma, A. Mitchell, S. J. Madden, D. Marpaung, B. J. Eggleton. Integration of Brillouin and passive circuits for enhanced radio-frequency photonic filtering. APL Photon., 4, 106103(2019).

    [47] H. Yang, J. Li, P. Zheng, G. Hu, B. Yun, Y. Cui. A stopband and passband switchable microwave photonic filter based on integrated dual ring coupled Mach-Zehnder interferometer. IEEE Photon. J., 11, 5502608(2019).

    [48] Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, D. Marpaung. All-optimized integrated RF photonic notch filter. Opt. Lett., 42, 4631-4634(2017).

    [49] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. Tunable microwave-photonic filtering with high out-of-band rejection in silicon. APL Photon., 5, 096103(2020).

    [50] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [51] K. Van Gasse, R. Wang, G. Roelkens. 27  dB gain III–V-on-silicon semiconductor optical amplifier with >17  dBm output power. Opt. Express, 27, 293-302(2019).

    [52] G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, J. Chen. 32  Gb/s OOK and 64  Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2  V drive voltage. IEEE Photon. J., 11, 6603610(2019).

    [53] Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, M. R. Watts. Whispering gallery germanium-on-silicon photodetector. Opt. Lett., 42, 2878-2881(2017).

    [54] Z. Zhu, Y. Liu, M. Merklein, O. Daulay, D. Marpaung, B. J. Eggleton. Positive link gain microwave photonic bandpass filter using Si3N4-ring-enabled sideband filtering and carrier suppression. Opt. Express, 27, 31727-31740(2019).

    [55] J. Ding, S. Shao, L. Zhang, X. Fu, L. Yang. Method to improve the linearity of the silicon Mach-Zehnder optical modulator by doping control. Opt. Express, 24, 24641-24648(2016).

    [56] Y. Tao, H. Shu, M. Jin, X. Wang, L. Zhou, W. Zou. Numerical investigation of the linearity of graphene-based silicon waveguide modulator. Opt. Express, 27, 9013-9031(2019).

    [57] Q. Zhang, H. Yu, P. Xia, Z. Fu, X. Wang, J. Yang. High linearity silicon modulator capable of actively compensating input distortion. Opt. Lett., 45, 3785-3788(2020).

    [58] H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, S. Yu. 800  Gbit/s transmission over 1  km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res., 8, 1776-1782(2020).

    [59] Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, L. K. Oxenløwe. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110  GHz. Nanophotonics, 9, 317-325(2020).

    [60] L. Zhang, L. Jie, M. Zhang, Y. Wang, Y. Xie, Y. Shi, D. Dai. Ultrahigh-Q silicon racetrack resonators. Photon. Res., 8, 684-689(2020).

    [61] T. Hao, Y. Liu, J. Tang, Q. Cen, W. Li, N. Zhu, Y. Dai, J. Capmany, J. Yao, M. Li. Recent advances in optoelectronic oscillators. Adv. Photon., 2, 044001(2020).

    [62] L. R. Cortés, D. Onori, H. G. de Chatellus, M. Burla, J. Azaña. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica, 7, 434-447(2020).

    [63] Z. Tang, S. Pan, J. Yao. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt. Express, 20, 6555-6560(2012).

    [64] T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong. Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron., 16, 307-315(2009).

    Yuansheng Tao, Haowen Shu, Xingjun Wang, Ming Jin, Zihan Tao, Fenghe Yang, Jingbo Shi, Jun Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response[J]. Photonics Research, 2021, 9(8): 1569
    Download Citation