• Photonics Research
  • Vol. 11, Issue 1, 65 (2023)
Dianzhuang Zheng1, Shuiying Xiang1、2、6、*, Xingxing Guo1, Yahui Zhang1, Biling Gu1, Hongji Wang3, Zhenzhen Xu3, Xiaojun Zhu4, Yuechun Shi3、5、7、*, and Yue Hao2
Author Affiliations
  • 1State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
  • 2State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
  • 3Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
  • 4School of Information Science and Technology, Nantong University, Nantong 226019, China
  • 5Yongjiang Laboratory, Ningbo 315202, China
  • 6e-mail: syxiang@xidian.edu.cn
  • 7e-mail: yuechun-shi@ylab.ac.cn
  • show less
    DOI: 10.1364/PRJ.471950 Cite this Article Set citation alerts
    Dianzhuang Zheng, Shuiying Xiang, Xingxing Guo, Yahui Zhang, Biling Gu, Hongji Wang, Zhenzhen Xu, Xiaojun Zhu, Yuechun Shi, Yue Hao. Experimental demonstration of coherent photonic neural computing based on a Fabry–Perot laser with a saturable absorber[J]. Photonics Research, 2023, 11(1): 65 Copy Citation Text show less
    References

    [1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [2] W. Zhang, B. Gao, J. Tang, P. Yao, Y. Shimeng, C. Meng-Fan, H.-J. Yoo, H. Qian, H. Wu. Neuro-inspired computing chips. Nat. Electron., 3, 371-382(2020).

    [3] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur. TrueNorth: design and tool flow of a 65  mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput., 34, 1537-1557(2015).

    [4] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, A. D. Brown. Overview of the SpiNNaker system architecture. IEEE Trans. Comput., 62, 2454-2467(2013).

    [5] M. Davies, N. Srinivasa, T.-H. Lin. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro, 38, 82-99(2018).

    [6] G. W. Burr. A role for optics in AI hardware. Nature, 569, 199-200(2019).

    [7] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-447(2017).

    [8] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [9] A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, P. R. Prucnal. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).

    [10] B. Shi, N. Calabretta, R. Stabile. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron., 26, 7701111(2020).

    [11] S. Xiang, Z. Ren, Z. Song, Y. Zhang, X. Guo, G. Han, Y. Hao. Computing primitive of fully-VCSELs-based all optical spiking neural network for supervised learning and pattern classification. IEEE Trans. Neural Netw. Learn. Syst., 32, 2494-2505(2021).

    [12] Y. J. Lee, M. B. On, X. Xiao, R. Proietti, S. B. Yoo. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model. Opt. Express, 30, 19360-19389(2022).

    [13] E. Yurtsever, J. Lambert, A. Carballo, K. Takeda. A survey of autonomous driving: common practices and emerging technologies. IEEE Access, 8, 58443-58469(2020).

    [14] A. Graves, A. R. Mohamed, G. Hinton. Speech recognition with deep recurrent neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing, 6645-6649(2013).

    [15] W. T. Miller. Real-time application of neural networks for sensor-based control of robots with vision. IEEE Trans. Syst., 19, 825-831(1989).

    [16] V. Sze, Y. H. Chen, J. Emer, A. Suleiman, Z. Zhang. Hardware for machine learning: challenges and opportunities. IEEE Custom Integrated Circuits Conference (CICC), 1-8(2017).

    [17] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, D. Modha. A low power, fully event-based gesture recognition system. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7243-7252(2017).

    [18] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, B. Kay. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci., 2, 10-19(2022).

    [19] P. R. Prucnal, B. J. Shastri, T. F. D. Lima, M. A. Nahmias, A. N. Tait. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Opt. Photon., 8, 228-299(2016).

    [20] B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, P. R. Prucnal. Spike processing with a graphene excitable laser. Sci. Rep., 6, 19126(2016).

    [21] M. A. Nahmias, B. J. Shastrin, A. N. Tait, P. R. Prucnal. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron., 19, 1800212(2013).

    [22] W. Coomans, L. Gelens, S. Beri, J. Danckaert, G. Van der Sande. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys. Rev. E, 84, 036209(2011).

    [23] A. Hurtadoa, K. Schires, I. D. Henning, M. J. Adams. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl. Phys. Lett., 100, 103703(2012).

    [24] Y. Zhang, S. Xiang, X. Guo, A. Wen, Y. Hao. Polarization-resolved and polarization-multiplexed spike encoding properties in photonic neuron based on VCSEL-SA. Sci. Rep., 8, 16095(2018).

    [25] R. Wang, C. Qian, Q. Ren, J. Zhao. Optoelectronic neuromorphic system using the neural engineering framework. Appl. Opt., 56, 1517-1525(2017).

    [26] S. Barbay, R. Kuszelewicz, A. M. Yacomotti. Excitability in a semiconductor laser with saturable absorber. Opt. Lett., 36, 4476-4478(2011).

    [27] C. Mesaritakis, A. Kapsalis, A. Bogris, D. Syvridis. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers. Sci. Rep., 6, 39317(2016).

    [28] S. Xiang, Y. Zhang, J. Gong, X. Guo, L. Lin, Y. Hao. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J. Sel. Top. Quantum Electron., 25, 1700109(2019).

    [29] T. Deng, J. Robertson, A. Hurtado. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: towards neuromorphic photonic networks. IEEE. J. Sel. Top. Quantum Electron., 23, 1800408(2017).

    [30] J. Robertson, T. Deng, J. Javaloyes. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt. Lett., 42, 1560-1563(2017).

    [31] B. Romeira, R. Avó, J. M. Figueiredo, S. Barland, J. Javaloyes. Regenerative memory in time-delayed neuromorphic photonic resonators. Sci. Rep., 6, 19510(2016).

    [32] B. Romeira, J. M. L. Figueiredo, J. Javaloyes. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: perspectives and applications. Chaos, 27, 114323(2017).

    [33] V. A. Pammi, K. Alfaro-Bittner, M. G. Clerc, S. Barbay. Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500307(2020).

    [34] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay. Temporal summation in a neuromimetic micropillar laser. Opt. Lett., 40, 5690-5693(2015).

    [35] J. K. George, A. Mehrabian, R. Amin, J. Meng, T. F. de Lima, A. N. Tait, B. J. Shastri, T. El-Ghazawi, P. R. Prucnal, V. J. Sorger. Neuromorphic photonics with electro-absorption modulators. Opt. Express, 27, 5181-5191(2019).

    [36] A. N. Tait, T. F. de Lima, M. A. Nahmias, H. B. Miller, H.-T. Peng, B. J. Shastri, P. R. Prucnal. Silicon photonic modulator neuron. Phys. Rev. A, 11, 064043(2019).

    [37] A. N. Tait, M. A. Nahmias, B. J. Shastri, P. R. Prucnal. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol., 32, 3427-3439(2014).

    [38] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [39] C. Huang, S. Bilodeau, T. F. de Lima, A. N. Tait, P. Y. Ma, E. C. Blow, A. Jha, H.-T. Peng, B. J. Shastri, P. R. Prucnal. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photon., 5, 040803(2020).

    [40] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad, G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, A. Q. Liu. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [41] G. Mourgias-Alexandris, A. Totovic, A. Tsakyridis, N. Passalis, K. Vyrsokinos, A. Tefas, N. Pleros. Neuromorphic photonics with coherent linear neurons using dual-IQ modulation cells. J. Lightwave Technol., 38, 811-819(2020).

    [42] G. Mourgias-Alexandris, M. Moralis-Pegios, S. Simos, G. Dabos, N. Passalis, M. Kirtas, T. Rutirawut, F. Y. Gardes, A. Tefas, N. Pleros. A silicon photonic coherent neuron with 10GMAC/sec processing line-rate. Optical Fiber Communication Conference, Tu5H.1(2021).

    [43] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [44] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [45] H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, X. Zhang. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photon., 7, 792-799(2020).

    [46] Y. N. Han, S. Y. Xiang, Z. X. Ren, C. T. Fu, A. J. Wen, Y. Hao. Delay-weight plasticity-based supervised learning in optical spiking neural networks. Photon. Res., 9, B119-B127(2021).

    [47] J. Xiang, Y. Zhang, Y. Zhao, X. Guo, Y. Su. All-optical silicon microring spiking neuron. Photon. Res., 10, 939-946(2022).

    [48] L. Hou, M. Haji, J. Akbar, B. Qiu, A. C. Bryce. Low divergence angle and low jitter 40  GHz AlGaInAs/InP 1.55  μm mode-locked lasers. Opt. Lett., 36, 966-968(2011).

    [49] S. Xiang, Y. Shi, X. Guo, Y. Zhang, H. Wang, D. Zheng, Z. Song, Y. Han, S. Gao, S. Zhao, B. Gu, H. Wang, X. Zhu, L. Hou, X. Chen, W. Zheng, X. Ma, Y. Hao. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on integrated Fabry–Pérot laser with saturable absorber. arXiv(2022).

    [50] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay. Relative refractory period in an excitable semiconductor laser. Phys. Rev. Lett., 112, 183902(2014).

    [51] J. L. Dubbeldam, B. Krauskopf, D. Lenstra. Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E, 60, 6580-6588(1999).

    [52] J. Javaloyes, S. Balle. Mode-locking in semiconductor Fabry-Pérot lasers. IEEE J. Quantum Electron., 46, 1023-1030(2010).

    [53] E. M. Izhikevich. Dynamical Systems in Neuroscience(2007).

    [54] G. Kozyreff, T. Erneux. Singular Hopf bifurcation to strongly pulsating oscillations in lasers containing a saturable absorber. Eur. J. Appl. Math., 14, 407-420(2003).

    [55] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, M. Wolfrum. Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems. Opt. Commun., 215, 367-379(2003).

    [56] J. L. A. Dubbeldam, B. Krauskopf. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Opt. Commun., 159, 325-338(1999).

    [57] G. Sarantoglou, M. Skontranis, A. Bogris, C. Mesaritakis. Experimental study of neuromorphic node based on a multiwaveband emitting two-section quantum dot laser. Photon. Res., 9, B87-B95(2021).

    [58] E. M. Izhikevich. Resonate-and-fire neurons. Neural Networks, 14, 7883-7894(2001).

    [59] X. Guo, J. Xiang, Y. Zhang, Y. Su. Integrated neuromorphic photonics: synapses, neurons, and neural networks. Adv. Photon. Res., 2, 2170019(2021).

    [60] Y. Hao, S. Xiang, G. Han, J. Zhang, X. Ma, Z. Zhu, X. Guo, Y. Zhang, Y. Han, Z. Song, Y. Liu, L. Yang, H. Zhou, J. Shi, W. Zhang, M. Xu, W. Zhao, B. Pan, Y. Huang, Q. Liu, Y. Cai, J. Zhu, X. Ou, T. You, H. Wu, B. Gao, Z. Zhang, G. Guo, Y. Chen, Y. Liu, X. Chen, C. Xue, X. Wang, L. Zhao, X. Zou, L. Yan, M. Li. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci., 64, 201401(2021).

    Dianzhuang Zheng, Shuiying Xiang, Xingxing Guo, Yahui Zhang, Biling Gu, Hongji Wang, Zhenzhen Xu, Xiaojun Zhu, Yuechun Shi, Yue Hao. Experimental demonstration of coherent photonic neural computing based on a Fabry–Perot laser with a saturable absorber[J]. Photonics Research, 2023, 11(1): 65
    Download Citation