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As Moore’s law has reached its limits, it is becoming increasingly difficult for traditional computing architectures
to meet the demands of continued growth in computing power. Photonic neural computing has become a prom-
ising approach to overcome the von Neuman bottleneck. However, while photonic neural networks are good at
linear computing, it is difficult to achieve nonlinear computing. Here, we propose and experimentally demon-
strate a coherent photonic spiking neural network consisting of Mach–Zehnder modulators (MZMs) as the syn-
apse and an integrated quantum-well Fabry–Perot laser with a saturable absorber (FP-SA) as the photonic spiking
neuron. Both linear computation and nonlinear computation are realized in the experiment. In such a coherent
architecture, two presynaptic signals are modulated and weighted with two intensity modulation MZMs through
the same optical carrier. The nonlinear neuron-like dynamics including temporal integration, threshold,
and refractory period are successfully demonstrated. Besides, the effects of frequency detuning on the nonlinear
neuron-like dynamics are also explored, and the frequency detuning condition is revealed. The proposed hard-
ware architecture plays a foundational role in constructing a large-scale coherent photonic spiking neural
network. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.471950

1. INTRODUCTION

With the rapid development of artificial intelligence (AI) tech-
nology, it is increasingly difficult to meet the computational
power required to train AI models with conventional electronic
processors based on von Neumann’s architecture [1]. The well-
known Moore’s law seems to be slowing down [2]. The com-
putation power of integrated electronic circuits is also hardly
sufficient to cope with the rapidly increasing volume of data.
Neuromorphic computing holds the promise of breaking
through traditional computing to achieve increased computing
power and reduced power consumption. Some electronic neu-
romorphic processors such as the TrueNorth [3], SpiNNaker
[4], and Loihi [5] have been developed to show superb com-
puting power. Due to the inherent advantages of light in terms
of high speed, wide bandwidth, and low electromagnetic inter-
ference, neuromorphic computing has been developed rapidly

and efficiently in the field of optics [6–10]. Neuromorphic
photonics will have a huge and far-reaching impact in the field
of AI [9–11]. Compared with classical computing, photonics
neuromorphic computing [7–12] offers the advantages of high
bandwidth, massive parallel computing, and ultra-low energy
consumption, making it suitable for deep-learning-type tasks
such as speech recognition, target detection [13–17], and
edge-computing applications [18].

The photonic circuits that enable neuromorphic computing
are composed of a large number of photonic devices, which
need to be matched to existing established neural network
frameworks. With the development of photonic integration
technology, significant progress has been made in the hardware
implementation of photonic neural networks. Inspired by the
biological brain, the neuromorphic photonic structure consists
of photonic neurons and synapses. Since semiconductor lasers
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can generate complex neuron-like dynamics, a large number of
semiconductor laser-based approaches have been proposed to
simulate spiking laser neurons experimentally and numerically
[19–24]. Spiking laser neurons consist of two main types: op-
tical/electrical/optical (O/E/O) neurons [25] and all-optical
neurons [19,20,23,24]. Two-section excitable lasers [19–21,
24–27], vertical cavity surface-emitting lasers (VCSELs)
[23,28–30], resonant tunneling diodes [19,22,31,32], micro-
pillar lasers [19,33,34], and modulator-based neurons [35,36]
have all been used to emulate the photonic neurons.

To date, optical neural network architectures for linear
operation fall into two main categories: wavelength-division-
multiplexed (WDM) layout [9,37–39] and coherent interfer-
ence schemes [7,40–42]. A photonic neural network based on
the WDM scheme uses different wavelengths to encode the
input signals. That is to say, each photonic synapse is imple-
mented using a different wavelength. However, achieving pre-
cise resonant control [39] can be difficult. One approach is to
use a single light source that can produce multiple wavelengths,
which requires a complex process and a high cost [43].

Coherent neural networks hold the promise of leveraging
existing integrated interferometric platforms to enable large-
scale integrated photonic chips. Currently, coherent photonic
neural networks with multiple cascaded Mach–Zehnder
interferometers (MZIs) have been successfully implemented
theoretically and experimentally [7,44,45]. Shen et al. used cas-
caded MZIs to simulate artificial neural networks to implement
deep learning tasks [7]. Zhou et al. have designed reconfigur-
able photonic signal processors using MZI lattices, which can
implement a variety of complex optical functions [45]. The
delay and weighting of signals by synapses are a learning mecha-
nism in the biological brain, and there are few hardware
architectures available to simulate its implementation [46].
However, while photonic neural networks are good at linear
computing, it is difficult to achieve nonlinear computing.
Specifically, a prototypical photonic spiking neural network
that includes both the photonic synapses and photonic neurons
for neural computation remains unexplored.

In this work, we propose and experimentally demonstrate a
prototypical photonic coherent spiking neural network consist-
ing of Mach–Zehnder modulators (MZMs) as the photonic
synapse and the integrated quantum-well Fabry–Perot laser
with a saturable absorber (FP-SA) as the photonic spiking neu-
ron. The main advantages of using FP-SA are as follows.
Compared to the VCSEL-SA and optically injected VCSEL
without SA [23,27–29], the FP-SA is easy to fabricate with
a simple commercial process. Besides, the output power is
much larger than that of the VCSEL-SA and VCSEL; thus,
it is highly desirable for future integration with the synapse.
Compared to the silicon ring-based spiking neuron [47], the
response speed of the FP-SA is faster due to the fast carrier
dynamics inside the laser cavity. In addition, the FP-SA is a
multi-longitudinal mode laser, which will enable wavelength-
multiplexing computing and, thus, increase the computing
speed. Furthermore, the FP-SA can be easily controlled with
gain current and reverse voltage, which makes the FP-SA a re-
configurable spiking neuron. In the proposed coherent pho-
tonic spiking neural network architecture, two presynaptic

signals are weighted with two electro-optical intensity modu-
lators through the same optical carrier. We have obtained differ-
ent weighted summation signals by adjusting the electrical
delay of the input signals and voltages of the MZMs and phase
shifter. The weighted sum is then injected into the FP-SA that
serves as the photonic spiking neuron. The experimental results
show that the hardware architecture can realize the nonlinear
neuron-like dynamics including temporal integration, thresh-
old, and refractory period to accomplish nonlinear computa-
tions. Besides, the effects of frequency detuning between the
injected light and the FP-SA on the nonlinear neuron-like
dynamics are also explored.

2. EXPERIMENT SETUP AND METHOD

Coherent photonic neural networks use interference between
coherent optical fields for weighted summation operations.
The schematic diagram of the proposed hardware architecture
is shown in Fig. 1. It is composed of three neurons, i.e., two
presynaptic neurons (PRE) and one postsynaptic neuron
(POST), and two synapses (W 1 and W 2) connecting the neu-
rons. The electronic signal from one of the PRE outputs is de-
layed. The electronic signals from the two PRE outputs are
electro-optically converted and weighted by two MZMs.
The experimental setup for the schematic diagram of the pho-
tonic coherent spiking neural network is shown in Fig. 2(a).
Here, the photonic synapses that perform linear computation
are marked with the green block, and the photonic spiking neu-
rons that perform nonlinear computation are marked with the
red block. More specifically, two channel signals generated by
the arbitrary waveform generator (AWG) are adopted to mimic
two PRE outputs, respectively, and the FP-SA is employed to
emulate the POST. The differential quadrature reference phase
shift keying (DQPSK) MZM is used to mimic the optical syn-
apse. Here, the quantum-well FP-SA was designed and fabri-
cated, as shown in Fig. 2(b). The epitaxy structure of the wafer
is similar to that in Ref. [48].

In the experiments, a tunable laser (TL, AQ2200-136 TLS
module) operated in the continuous-wave (CW) state. The
polarization state of the light could be adjusted by the polari-
zation controller (PC). Two output signals, Vin1 and Vin2,
shown in Fig. 2(c), originating from the AWG (Tektronix
AWG70001A), were forwarded to two electronic amplifiers
to drive two MZMs. One of the input signals has been delayed.
The output of the TL was divided into two identical copies and
recombined again after modulation to form the weighted sum-
mation. The two presynaptic signals were modulated and

Fig. 1. Schematic diagram of the coherent photonic spiking neural
network.

66 Vol. 11, No. 1 / January 2023 / Photonics Research Research Article



weighted with two MZMs through the same optical carrier
generated by the TL. The weighted sum signal was sub-
sequently injected into the FP-SA. The injected power of
the modulated light could be further controlled by the variable
optical attenuator (VOA). The output of the FP-SA neuron
was split into two paths via an optical coupler, one of which
was captured by the optical spectrum analyzer (OSA,
Advantest Q8384), and the other was converted to the electri-
cal domain by the means of a photodetector (PD, Agilent/
HP11982A) and was subsequently captured by an oscilloscope
(OSC, Keysight DSOV334A).

The quantum-well FP-SA behaves analogously to the spik-
ing neuron model. The gain region of the FP-SA is driven by a
current source. The saturable absorber (SA) region is driven by
a voltage source with reverse voltage. Figure 3(a) depicts the
power-current (PI) curves of the FP-SA under various reverse
voltage cases of the SA region measured at 25°C. It can be seen
that the gain current (IG ) threshold is approximately 30 mA at
a reverse voltage of 0 V. Besides, as the SA reverse voltage in-
creases, the threshold current also increases. Figure 3(b) shows
the optical spectrum for a free-running FP-SA, showing the
multi-longitudinal-mode lasing spectrum. For the FP-SA,

with proper gain current and reverse voltage, self-pulsation
regimes such as Q switching and mode-locked state can be
observed [48,49]. Note that, for the single-mode laser with
SA [21,50,51], the excitable behavior occurs just below the las-
ing threshold; while for the multimode FP-SA [48,52], as in-
dicated in Refs. [48,52], the pulse state is observed above the
lasing threshold. Thus, the bias current of the FP-SA laser neu-
ron is above the lasing threshold but below the self-pulsation
threshold.

In our proposed coherent photonic spiking neural network,
the DQPSK MZM serves as optical synapses and is used for
linear weighted summation calculations. Note that, if using
two discrete MZMs, unstable interference phenomena can be
observed in experiment. To address this stability issue, we em-
ploy the integrated DQPSK MZM, which makes the synapse
stable. In our experiments, we used a Ti:LiNbO3 DQPSK
single-drive MZM (DQPSK MZM) with modulation speed
of up to 22.5 Gbaud. As shown in the green box in Fig. 2(a),
the DQPSK MZM uses high-speed traveling wave MZMs for
linear modulation and a phase shifter for summation operation.
In order to accurately bias the two MZMs and the phase shifter,
the respective DC power sources are used. V 1 and V 2 are the
bias voltages applied to the corresponding MZMs. The con-
structive interference between two optical signals can be
achieved when the phase shift is 0.

3. RESULTS

Here, the proposed coherent photonic neural network is uti-
lized to demonstrate the implementation of both linear and
nonlinear computational functions.

At first, we consider the linear weighted summation imple-
mented by the DQPSKMZM. By traversing the bias voltages of
the two modulators, we obtain the modulation characteristics of
the DQPSK MZM, as shown in Fig. 4. Table 1 represents the
one-to-one correspondence between the bias voltages V 1 and
V 2 of the two MZMs and the weight values W 1 and W 2 of
the neural network. We obtain the desired weighted signals
by adjusting the values of V 1 and V 2 to control the weights.

Similar to a biological neuron, the nonlinear computational
functions of a photonic spiking neuron mainly include

Fig. 2. (a) Experimental setup for the coherent photonic spiking
neural network; (b) integrated FP-SA chip and (c) two input signals
V in1 and V in2 generated by AWG. AWG, arbitrary waveform gener-
ator; V in1 and V in2, input signals; TL, tunable laser; DL, delay line;
VOA, variable optical attenuator; PC1 and PC2, polarization control-
ler; EA1 and EA2, electronic amplifier; MZM1 and MZM2, Mach–
Zehnder modulator; OC, optical coupler; PD, photodetector; PM,
powermeter; OSA, optical spectrum analyzer; Bias&T Controller, bias
and temperature controller; Scope, oscilloscope. The black (red) lines
correspond to optical (electrical) path. The saturable absorber was
reversely biased with the voltage source.

Fig. 3. (a) PI curve and (b) optical spectrum of the FP-SA measured
at 25°C. The total length of the FP-SA chip is 1500 μm, the width of
the laser chip is 300 μm, the ridge waveguide width is 2.5 μm, and the
length of the SA region is 75 μm. The SA section side facet and
gain section side facet are coated with reflections of 95% and 30%,
respectively.
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temporal integration, threshold, and refractory period. We have
obtained different weighted summation signals by adjusting
electrical delay and voltages of the MZMs and phase shifter
to demonstrate the implementation of complex nonlinear
neuron-like dynamics.

As shown in Fig. 5(a1), the weighted summation signal after
electrical delay contains two weak perturbation pulses of the
same power and a set of two closely spaced weak pulses. As
shown in Fig. 5(a2), by adjusting the delay of the two electrical
input signals so that the inter-spike interval (ISI) of two closely
spaced weak perturbation pulses is 0.6 ns, the FP-SA neuron is

triggered to generate a neuron-like spike, while the remaining
perturbation pulses do not produce the response pulses. In
other words, although a single weak pulse cannot reach the
spike threshold, the two closely spaced weak pulses are tempo-
rally integrated and, thus, exceed the threshold, which demon-
strates the proposed coherent optical neural network can realize
the temporal integration property. To demonstrate that repro-
ducible spiking responses can be obtained in the experiment,
we further show the experimental color-coded temporal maps,
plotting a superimposed time series of the responses corre-
sponding to 100 successive arriving stimulus events, as shown
in Fig. 5(c1). This illustrates that, for each of the 100 incoming
stimuli, the same spiking response is obtained. In addition, the
effects of the ISI on the temporal integration property are ex-
amined carefully. It is found that FP-SA neurons can achieve
temporal integration when the interval between external input
pulses is between 0.2 and 0.8 ns. As shown in Fig. 5(b1), by
adjusting V 1 and V 2, the weighted summation signals consist of
three pulses with different powers. Only the second pulse with
power above the threshold triggers the FP-SA neuron to generate
a spike, whereas the first and third pulses do not generate re-
sponse spikes because they do not exceed the threshold, as shown
in Fig. 5(b2). The experimental measurements indicate that the
threshold of V in is about 40 mV. Figure 5(c2) further demon-
strates the repeatability of the threshold response.

In order to verify the refractory period property, the optical
power of TL is increased so that the value of V in is well above
the threshold, as shown in Figs. 6(a1) and 6(b1). As shown in
Figs. 6(a1) and 6(a2), the weighted summation signals consist
of two strong perturbation pulses and a set of two strong per-
turbation pulses that are closely spaced. Obviously, a single
strong perturbation pulse can elicit a response spike. It is found
that the four pulses triggered only three response spikes, which
indicates the refractory period. This is because it takes time for

Fig. 4. Modulation characteristics of the DQPSK single-drive
MZM. The phase shifter is 0. The bias voltage of MZM1 (MZM2)
is V 1 �V 2�. (a) V 1 � 4.5 V; (b) V 2 � 4.5 V; (c) V 1 � V 2.

Table 1. Weight Corresponding to the Voltage

V 1 �V� W 1 V 2 �V� W 2

3.00 1 3.00 1
5.62 0.8 5.40 0.8
6.91 0.6 6.80 0.6
8.21 0.4 7.90 0.4
9.50 0.2 9.30 0.2
11.36 0 11.00 0

Fig. 5. Experimental demonstration of temporal integration prop-
erty and spike threshold property. (a1) and (a2) indicate temporal in-
tegration property. (a1) represents the input signals for the weighted
summation and (a2) denotes the response of the FP-SA neuron. (b1)
and (b2) indicate spike threshold property. (b1) represents the input
signals for the weighted summation and (b2) denotes the response of
the FP-SA neuron. Temporal maps show the laser neuron’s responses
to 100 successive external stimuli, where (c1) corresponds to the
stimulus in (a1) and (c2) to the stimulus in (b1). The bias voltage
of the FP-SA is −1.846 V, and the bias current is 62.8 mA.

Fig. 6. Experimental demonstration of the refractory period prop-
erty. (a1) and (a2) indicate that FP-SA neurons are in the refractory
period regime. (a1) represents the input signals for the weighted sum-
mation and (a2) denotes the response of the FP-SA neuron. (b1) and
(b2) indicate that the FP-SA neuron has left the refractory period re-
gime. (b1) represents the input signals for the weighted summation
and (b2) denotes the response of the FP-SA neuron. Temporal maps
show the laser neuron’s responses to 100 successive external stimuli,
where (c1) corresponds to the stimulus in (a1) and (c2) to the stimulus
in (b1). The bias voltage of the FP-SA is −1.846 V, and the bias
current is 62.8 mA.
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the gain section to fully recover its gain. Besides, the effects of
the ISI on the refractory period property are examined carefully.
The FP-SA neuron responds with a single spike when ISI is
between 0.2 and 0.5 ns, indicating that the refractory period
is about 0.5 ns. When the FP-SA neuron has left the refractory
period regime, namely, when the ISI is greater than 0.5 ns,
every perturbation pulse can elicit a response spike. As shown
in Figs. 6(b1) and 6(b2), when the ISI is 0.6 ns, four pulses
triggered four response spikes. The experimental color-coded
temporal maps are shown in Figs. 6(c1) and 6(c2), demonstrat-
ing that reproducible refractory period property can be
obtained in the experiment.

In addition, the effect of the wavelength of the optically in-
jected light on the realization of neuron-like dynamics has been
carefully investigated. Figure 7 shows the optical spectra for the
optically injected FP-SA that operates as a photonic spiking neu-
ron. The wavelength of the TL is varied so that it is injected into
different longitudinal modes of the FP-SA. In particular, the
spacing between the wavelength of the external optical stimulus
and the peak wavelength of the FP-SA is an integer multiple of
the longitudinal mode spacing (0.22 nm for the FP-SA). Here,
for the spike threshold property, we select three representative
experimental results with distinct wavelength differences
(2.86 nm, 6.16 nm, and 7.92 nm) as shown in Fig. 7. Note,
it is experimentally demonstrated that neuron-like dynamics
can also be achieved when the wavelength of the external optical
light is less than the peak wavelength of the FP-SA.

The experimental result verifies that our proposed coherent
photonic spiking neural network architecture can achieve linear
computation and complex nonlinear neuron-like dynamics.
Besides, thanks to the introduction of the delay element,
the proposed network architecture is a promising candidate
for hardware implementation of the delay-weight learning
algorithm [46].

4. DISCUSSION

Note that class I and class II excitabilities are two major cat-
egories observed in biological neurons [53]. We further

consider the excitability class of the FP-SA neuron. Here,
we consider a time-varying stimulus signal and study the spike
response. The results are shown in Fig. 8. On the one hand, as
shown in Fig. 8(b1), the ISI of the spike train is almost constant,
but the spike amplitude is increased with the stimulus strength.
According to the bifurcation theory, this may be attributed to the
Andronov–Hopf bifurcation, which is related to class II excita-
bility [53,54]. When the FP-SA neuron is in class II excitability,
the external optical injection power is around 40 μW, the bias
voltage is −1.846 V, and the bias current is 62.8 mA. On the
other hand, as shown in Fig. 8(b2), when the injection power is
increased, we can see that two different spikes are responding to
the triangular stimulus signal. The first type of spike is similar to
that shown in Fig. 8(b1), and the second type of spike train has
similar spike amplitude, but the ISI is varied with the stimulus
strength, which may be attributed to the saddle-node bifurcation
or homoclinic bifurcation; thus, it is related to class I excitability
[55,56]. When the FP-SA neuron is operating at class I excita-
bility, the bias voltage is −1.846 V, the bias current is 62.8 mA,
and the external optical injection power is approximately 60 μW
or higher. It is clear that in Fig. 8(b2) the first type of spike re-
sponse does not have a well-defined threshold, but the second
type of spike does. Figure 8(c) represents the ISI distribution
with respect to the injection power of stimulus signals. As seen
in Figs. 8(b2) and 8(c), although the bias point of the FP-SA
does not change, the change in the externally injected optical
power causes a switch in the FP-SA state. In other words, as
the external optical injection changes, the FP-SA alternates be-
tween class I and class II excitability. We, therefore, believe that
both excitability mechanisms contribute to the neural-like com-
putational functions. Note that the average optical power value
recorded by the optical powermeter serves as the amount of ex-
ternally injected optical power in our experiments. Thus,we think
the FP-SA neuron supports both class I and class II excitability
depending on the parameters, which is similar to the findings ob-
tained in Ref. [57]. That is to say, the FP-SA can act as either res-
onator-type or integrator-type neuron [58].

5. CONCLUSION

We proposed and experimentally demonstrated a prototypical
coherent photonic spiking neural network that included the

Fig. 7. Experimental demonstration of the effect of frequency de-
tuning on spike threshold property. (a) represents the input stimulus
signal. (b1)–(b3) denote the response of the FP-SA neuron, corre-
sponding to the three optical spectra for the FP-SA that operates as
a photonic spiking neuron, as shown in (c1)–(c3). The bias voltage
of the FP-SA is −1.846 V, and the bias current is 62.8 mA.

Fig. 8. Spike response of the FP-SA neuron when injecting the tri-
angular stimulus signal. (a) represents the input signal where the light
intensity varies as a triangular wave. (b1) and (b2) denote the response
of the FP-SA neuron. (c) represents the ISI interval distribution cor-
responding to the first type of spike and the second type of spike. The
bias voltage of the FP-SA is −1.846 V, and the bias current is 62.8 mA.
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MZM as the photonic synapse and the FP-SA as the photonic
spiking neuron. Both the linear weighted summation and com-
plex nonlinear neuron-like dynamics including temporal integra-
tion, threshold, and refractory period were experimentally
demonstrated. More specifically, the weighted summation was
obtained by means of different delays and modulation indices
of the MZM. The nonlinear neuron-like dynamics were
achieved in the FP-SA subject to optical injection from the
weighted sum of presynaptic signals. In addition, the condition
of the spacing between the wavelength of the external optical
stimulus and the peak wavelength of the FP-SA for the neu-
ron-like dynamics was revealed. It is suggested that the neuron-
like dynamics were attained when the wavelength of the external
optical stimulus matches or is slightly larger than the longitudinal
mode wavelength of the FP-SA. The proposed approach offers a
promising solution to realize the photonic spiking neural
network hardware and plays a key foundation for large-scale
photonic integrated spiking neural network chips.

Note, to solve complex computation tasks, large-scale pho-
tonic spiking neural network (SNN) is further desired. To ob-
tain a fully integrated large photonic spiking neural network,
there are still many bottlenecks and difficulties. First, the foot-
print of the FP-SA neuron and MZM synapse is relatively large,
which makes high-density integration difficult. Second, there is
no single commercial fabrication platform enabling the light
sources, passive and active components being fully integrated
in a single chip [59]. Third, the loss, heat dissipation, and ther-
mal cross talk should be carefully addressed. Fourth, the cou-
pling efficiency of the TL, MZM array, and FP-SA array needs
to be improved. Fifth, the opto-electronic packaging of large-
scale chips is also a considerable challenge [60].
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